Connes-Lott … y Coquereux y más gente.

He mencionado un seminario en Karpatz. No se si sabreís que esta escuela se celebra en Febrero. Allí fuimos Jose Luis Lopez y un servidor, en tren hasta la frontera con Polonia, o Silesia o como se llame, y en un autobus hasta la nieve, que salimos del bus con ropa de verano en medio de lo que parecia una tempestad.

Total, que entre otras charlas había una de Robert Coquereaux sobre Geometría No Commutativa para modelar el Higgs, con unos ejemplos triviales practicamente de matrices 2×2, y me quede convencido. El año de Leipzig mis apuntes de la charla de Connes se habian limitado a dos lineas: el título y una nota: «parece interesante».

A la vuelta, ¡resulto que el departamento acababa de reclutar a dos investigadores que trabajaban en ese tema! Pepe Gracia-Bondía y Joe Varilly, que pasearon por medio mundo su  «preprint amarillo«. Poco despues, en el verano de 1995, Connes organizaba una sesion de los cursos de verano de Les Houches sobre el tema, y presentaba un nuevo concepto, «reality», que simplificaba mucho el formalismo. Así que allí acudí y fue un mes bastante intenso, con los nuevos resultados e incluso alguna que otra esperanza, que no cuajo, de acabar encontrando una simetria de quantum group… quizas para las generaciones, pero no lo juraria.

Un resumen de aquellos primeros diez años de geometria no conmutativa podeis consultarlo, de manera bastante incomoda, aqui:
http://dftuz.unizar.es/~rivero/research/ncactors.html

Mis intentos de investigación personal fueron bastante malos; preparé un articulo, hep-th/9605006, sobre la posibilidad de incluir otro boson Z’, pero me desanimé despues de que una crítica bastante contundente de Joe. Mejor terminó el intento de sacar algo en claro del «Tangent Grupoid», porque se pusieron manos a la obra Pepin, Jesus y Eduardo y finalmente salió un report publicable, aunque con muchas manos para tan poco tema. Lo que a mi me preocubaba del grupoide tangente era su aplicación pata entender la discretización del espacio y por ello de las derivadas. Pensaba que en esa ambiguedad de la derivada no sólo podia encerrarse la ambiguedad en las reglas de cuantización (conmutadores, etc) sino tambien la justificación para necesitar al menos tres generaciones, asociada al hecho de que necesitabamos obtener al menos derivadas segundas en mecanica clásica. Algo de esto lo conté en un borrador hep-th/9804169, y la cuestión de como funciona esta discretización se convirtio en uno de mis motivos subsconcientes -o no tanto-.

Parte del estudio del grupoide tangente lo incorporó otro de los coautores senior, Joe Varilly, en las lecciones que estuvo dando en Monsaraz, en el Alentejo de Portugal. Allí colaboré como tutor, con poco trabajo de mi parte; no había aparecido ninguna posibilidad de hacer estancias de postdoct en este tema y preferí pasar a trabajar en la empresa privada. Posiblemente no fué demasiado buena idea. Es dificil pensar algo de calidad mientras estas currando en cosas diversas; por ello la investigación «amateur» no es una opción demasiado recomendable.

Por cierto que lo de usar NCG para determinar el modelo estandar no es tema cerrado, y hablaré de ello en otros posts. Este año ha habido un par de publicaciones dandle vueltas a las predicciones que se pueden obtener cuando el flujo de renormalizacion se mete por medio:

Ali H. Chamseddine, Alain Connes «Resilience of the Spectral Standard Model»
Christopher Estrada, Matilde Marcolli «Asymptotic safety, hypergeometric functions, and the Higgs mass in spectral action models«


Comments

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.