
ar
X

iv
:n

uc
l-

th
/0

40
71

18
 v

1 
  3

0 
Ju

l 2
00

4

Distance to the drip lines
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Abstract

It can be found that with the adequate measure, the beta stability line

is equidistant from neutron and proton drip lines. We explore this fact

and its predictive potentiality in the simplest case, the classic liquid drop

formula.

For a nucleus of atomic number A = N + Z in the beta stability line, we
can consider the corresponding nuclei (Z − k, N) in the proton drip line and
(Z, N − k′) in the neutron drip line, with respective masses Ap, An. The main
mass models in the market (eg, from [2]) predict a very small difference Ap−An,
which even becomes zero in isolated points under the action of microscopical
corrections.

We have studied this difference for the classical Weizsäcker formula[1],

Eb = a1A − a2A
2/3

− a3

Z2

A1/3
− a4

(A − 2Z)2

A

An analytical -even if very large- expression can be given if instead of taking
A as the independent variable, we fix the mass A0 in the drip lines. Then solving
the second degree equation in the proton drip line

M [Z, A0] − M [Z − 1, A0 − 1] − mz = 0

and the third degree one in the stability line (we take mp − mn ∼ 0 but it is
not necessary)

Z =
2a4A

a3A2/3 + 4a4

we can get the corresponding mass A and proton and neutron numbers Z, N(=
A − Z) of the stable nucleus. We compare this neutron number with the one
got from the neutron drip line equation

M [A0 − N0, A0] − M [A − N0, A0 − 1] − mn = 0.

The difference d(A0) = N − N0 results a very convenient function to input in
a numerical-analytical program such as, for instance, Mathematica, because we
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can plot dependences with any of the four free parameters of the model, as
well as mixed plots d(A0, ai) or d(ai, aj). It is specially relevant to check the
dependence in a3, because it has a natural minimum for the zero value, but it is
not uniformly increasing; there is a second minimum in the ∼ 1 MeV area, but
this one has also a dependence on A0 so we can no expect it to coincide exactly
with the usual value a3 = 0.711 MeV. Still, this minimum can be interpreted as
the cause of our equidistancy.

For the usual values

a1 = 15.75MeV, a2 = 17.8MeV, a3 = 0.711MeV, a4 = 23.0MeV,

it can be seen that d(A0) gets the higher value for A0 ∼ 300; it is only -0.815
when proton and neutron masses are equal, and this maximum discrepancy
moves by only about two units when proton and neutron masses are given
different value, so for simplicity one can find convenient to keep with mp−mn ∼

0 as we do here.
The function is not linear, so for mid-range masses the difference is appre-

ciably smaller. Generically we can say that the equidistance property k = k′

with different proton and neutrons masses holds within a 2%.
As a numerical experiment, and to test how strong a rule is the equidistance

to the driplines, we measured the square discrepancy at four different values,
using an averaging function

mean = d(50)2 + d(100)2 + d(150)2 + d(200)2,

and we took the bold bet of searching for minima1 in the allowed parameter
space of a1...a4.

After discarding unphysical or non-convergent zones, we explored a detailed
area for a1 = 6..18, a2 = 0..40, a3 = 0.3..1.2, a4 = 5..45. We seed the algorithm
with values in this area and then we ask it to descend numerically into a local
minimum. Note that smaller values of a3 cause the algorithm to descent into the
trivial a3 = 0 case. The results are seem in the table. The stability line depends
only of a3/a4, so it is a good indication to get both increasing, even if below the
empirical value. It can be said that we are always out, in the four parameters,
by a sensible percentage, but if one takes into account that no empirical input
is used in the calculation2, the exploration is successful enough. Besides, we
have chosen the averaging function in a very arbitrary way. This choosing is
surely more important than the seed. For the usual values, d(A0) has three
zeros besides the trivial, about A = 25, 600, 2000. This is very generic, and it
means that up to three discrete values can be adjusted in an unnatural manner.
The averaging formula must evaluate a number of points enough to be sure that
no zeros happen in the range of validity of the mass formula, say A = 30...300.
From the shape of d(A0) in this range it seems that a weighting proportional
to the binding energy of A0 (say, in the stability line) could be adequate, but it

1Mathematica 5.x users beware: the default method in FindMinimum notices the sum of
squares and it fails; you must use any of the older methods.

2except, if you want, the value of the atomic mass unit
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is still an ad-hoc suggestion, as any function with the same shape would do the
same role.

Experiments can be done with variations in only three, two or one param-
eters, but then the extant ones must be fixed with other methods, beyond the
purpose of this brief note. Contrary to the others, the parameter a4 seems not
be very able to vary, as it stops about two or three units from the seed. But
fixing it to 23.0 does not improve the match.

As we have said, the equidistance property can be noticed in most models
of nuclear masses, and our function d(A0), or alternatively any measure of the
discrepancy between k and k′, is an interesting parameter to consider when
studying the properties of a mass model.

An explanation of this property should be that really some important mass
dependent effect is enhanced at the drip lines, so this effect forces mass formulae
to adjust themselves to fit. The effect does not need to happen uniformly in all
the mass range, it is enough to force the coincidence in isolated points, perhaps
the ones having strong microscopical corrections, as noted above.

Perhaps it is related to the extra nuclear stability coming from magicity,
because an additional phenomena appears when we consider magic numbers at
the drip lines: we can use nuclear mass to pair Z and N numbers, in such way
that a nucleus in the proton drip line given a magic (or semimagic) Z number
correspond to another nucleus of the same mass in the proton neutron drip line,
having again a magic (or semimagic) N number:

At neutron dripline, N= 28-30 50 (64) 82 126 184
At proton dripline, Z= 28 (40) 50 (58) 82 114

mean sqr discrepancy a1 a2 a3 a4

0.00329185 11.1382 18.2911 0.521987 18.9961
0.00450291 11.0895 19.869 0.556106 17.1047
0.0173419 13.9102 20.5569 1.62424 13.6503
0.0158552 14.8943 19.1126 2.07992 14.2993
0.0144648 15.4414 18.2103 2.34985 14.7491
0.00267294 12.2724 18.3904 0.568557 22.0129
0.0021288 13.5535 18.1768 0.606681 26.1328
0.00175986 15.0299 17.7684 0.668602 30.3896
0.00149186 16.6956 17.0859 0.748912 34.9357
0.00108511 18.1636 12.6318 0.812369 41.3469
0.00110731 18.2587 12.8536 0.823127 41.2093
0.00113735 18.1823 13.6355 0.811909 40.8982

0.00212587...(*) 14.2744 16.8097 0.70215 26.5332
0.00214133...(*) 13.7113 18.2199 0.628928 25.981

Table 1: Some typical predictions from Mathematica’ FindMinimum explo-
rations of the allowed parameter range for the liquid drop model. To be com-
pared with the usual a1 = 15.75, a2 = 17.8, a3 = 0.711, a4 = 23.0. Lines marked
with (*) took 15.75 and 17.8 as seed
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By the way: the author was too worried about other phenomena and he
thought the fact here reported were well known. So I must thank M. Asorey by
asking why the drip lines I kept drawing were always equidistant of the stability,
and A. Zuker by suggesting to look first in the simplest model, Weizsaecker’s
liquid drop.
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