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Abstract

We review the landscape of bibliometric indicators for measuring inter-
disciplinary research and propose a structured three-component panel that
combines Rao-Stirling diversity, network coherence (mean linkage strength),
and a cross-field effect proxy. Drawing on recent work that exposes the
low consistency and limited construct validity of existing single-indicator
approaches, we organize the literature into a taxonomy of four conceptual
dimensions — diversity, coherence, diffusion, and novelty — and four
methodological families. Using a toy university dataset, we demonstrate
that no single scalar indicator can discriminate genuine cross-disciplinary
integration from polymathic breadth or narrow specialization. The full
panel, by contrast, uniquely characterizes each researcher type. We prove
analytically that this discrimination is robust under perturbation of the
inter-category similarity matrix. A department-level case study with seven
researchers confirms the panel’s discriminatory power at realistic scale, cor-
rectly distinguishing integrators, polymaths, and bridge specialists where
single indicators fail. These results suggest that evaluation of interdisci-
plinary research — whether at the institutional or national agency level —
requires a multidimensional approach rather than composite scoring.

Introduction

Interdisciplinary research (IDR) is widely regarded as essential for addressing
complex scientific and societal challenges. Policy initiatives in the United States,
Europe, and elsewhere have sought to foster interdisciplinarity, often predicated
on the assumption that crossing disciplinary boundaries leads to more impactful
research outcomes (National Academies, 2005). However, the measurement of
interdisciplinarity remains problematic. Despite decades of work, the bibliometric
literature has not converged on appropriate indicators.

Wang and Schneider (2020), testing 23 interdisciplinarity measures across four
methodological families, found surprisingly low correlations even among measures
designed to capture the same dimension, concluding that “no single indicator
can unequivocally identify” interdisciplinary research. Leydesdorff, Wagner,



and Bornmann (2019) showed that the widely used Rao-Stirling diversity index
is dominated by its disparity component, producing anomalous rankings and
low discriminatory power. Cantone (2024) argued that interdisciplinarity is a
“polysemous construct” whose multiple semantic dimensions cannot be captured
by any single numerical value. These findings point to a fundamental mismatch
between the multidimensional nature of IDR and the scalar indicators used to
measure it.

This paper makes two contributions. First, we survey the indicator landscape and
organize it into a taxonomy of four conceptual dimensions (diversity, coherence,
diffusion, novelty) crossed with four methodological families (reference-based,
citation-based, text-based, network-based). Second, we propose a specific three-
component panel — diversity, coherence, and cross-field effect — and demonstrate
its discrimination power on a toy dataset with analytical robustness guarantees.

The remainder of the paper is structured as follows. Section 2 reviews the
conceptual foundations of interdisciplinarity measurement. Section 3 presents
the indicator taxonomy. Section 4 defines our panel, demonstrates its discrimi-
nation power, and proves robustness results. Section 5 discusses implications for
institutional and national-level evaluation. Section 6 identifies open problems.
Section 7 applies the panel to a department-level case study. Section 8 concludes.

Conceptual Foundations

Stirling’s Diversity Framework

The difficulty of measuring interdisciplinarity is fundamentally a diversity mea-
surement problem. Stirling (2007) demonstrated that any meaningful charac-
terization of diversity requires attention to three properties — wariety (how
many categories are represented), balance (how evenly distributed they are),
and disparity (how different the categories are from each other) — and that
standard indices such as Shannon entropy or the Herfindahl concentration index
capture only the first two. This tripartite framework has become the standard
conceptual lens through which interdisciplinarity indicators are analyzed in
the bibliometric literature (Porter and Rafols, 2009; Leydesdorff and Rafols,
2011; Wang and Schneider, 2020). The framework’s influence extends beyond
bibliometrics: Stirling originally developed it in ecological and technological
diversity contexts, and its adoption by the scientometrics community reflects
a recognition that interdisciplinarity, like biodiversity, cannot be reduced to
a count of categories without attending to the distances between them. The
Rao-Stirling index A = )", £ d;;jp;p;, which operationalizes all three properties
in a single expression, has consequently become the most widely used point of
departure for indicator design (Rafols and Meyer, 2009; Zhang, Rousseau, and
Glanzel, 2016).



Historical Evolution

The modern study of interdisciplinarity has roots in science policy debates
of the 1970s, but quantitative measurement efforts accelerated only after the
OECD codified a tripartite typology that remains influential today (OECD, 1998;
Morillo, Bordons, and Gomez, 2003). Under that typology, multidisciplinary
research draws on different disciplinary perspectives without integrating them;
interdisciplinary research achieves a coherent theoretical, conceptual, or method-
ological synthesis; and transdisciplinary research entails a mutual integration of
disciplinary epistemologies that may transcend existing boundaries altogether.
While the boundaries between these categories remain contested, the distinction
foregrounds a critical question for indicator design: should measurement target
the breadth of disciplinary inputs (a multidisciplinary property) or the depth of
their integration (an interdisciplinary or transdisciplinary property)?

Wagner et al. (2011) elaborate these definitions in a comprehensive review of IDR
measurement. Multidisciplinary research “juxtaposes disciplinary perspectives,
adding breadth and available knowledge — the product is no more and no
less than the simple sum of its parts.” Interdisciplinary research “integrates
separate disciplinary data, methods, tools, concepts, and theories in order to
create a holistic view” — the product is “different from, and greater than, the
sum of its parts.” Transdisciplinary approaches “are comprehensive frameworks
that transcend the narrow scope of disciplinary worldviews.” They note that
common usage “rarely distinguishes between the input and output directions
of IDR” (Wagner et al., 2011, fn. 10), yet the distinction matters for measure-
ment: a researcher may draw on multiple disciplines’ methods in designing a
study (input-side interdisciplinarity) while publishing exclusively in one field
(output-side concentration), or conversely may publish across many fields without
methodological integration. A fourth mode, cross-disciplinary research, involves
referencing literature from another field without any attempt at integration
(Aksnes, Karlstrgm, and Piro, 2026; Hammarfelt, 2020).

Aksnes, Karlstrgm, and Piro (2026), surveying 1,498 publications with self-
reported IDR ratings, found that 42 percent of papers were rated as both
multidisciplinary and interdisciplinary, and a further 23 percent as partially
both. This empirical overlap confirms that the multi/inter distinction is not a
clean partition but a spectrum, and that single-scalar diversity indicators (which
aggregate breadth without regard for integration) cannot distinguish between
these modes. As Choi and Pak (2006) put it via Abramo, D’Angelo, and Zhang
(2018), multi-, inter-, and transdisciplinarity form “a continuum of increasing
levels of involvement by multiple disciplines.” The directionality of knowledge
flow matters as well. When the output of one discipline serves as input for another
without synthesis, the literature terms this sequential multidisciplinarity (Stokols
et al., 2003); when the borrowed input transforms the receiving discipline, it is
instrumental interdisciplinarity (Klein, 2008). Bidirectional exchange constitutes
reciprocal interdisciplinarity. Zhou, Guns, and Engels (2023) formalize the flow
perspective through their interdisciplinary knowledge flow (IKF) framework,



which characterizes exchanges along three dimensions: broadness, intensity, and
homogeneity. These distinctions have direct implications for the panel introduced
in Section 4: diversity (A) captures breadth regardless of direction, coherence
(S) distinguishes integration from juxtaposition, and the cross-field effect (E)
measures diffusion beyond the home discipline.

Empirical evidence on long-term trends sharpens this question. Porter and Rafols
(2009) analyzed publication records across ten subject areas from 1975 to 2005
and documented pervasive growth in surface-level markers of interdisciplinarity:
the average number of authors per paper increased by roughly 75 percent (from
1.3 to 2.0 in mathematics, 3.0 to 6.1 in medical research and education), the
average number of references per paper grew by approximately 50 percent, and
the diversity of cited disciplines expanded comparably. Single-author publication
rates declined sharply across all fields (from 71 to 37 percent in mathematics; from
40 to 20 percent in physics and biology; from 12 to 4 percent in chemistry). Yet
integration scores based on the Rao-Stirling index showed only a modest average
increase of roughly 5 percent over the same period (excluding mathematics,
where the increase reached 39 percent from a very low base). The conclusion
was striking: science was “becoming more interdisciplinary, but in small steps,”
with citations mainly reaching neighboring fields and only modest growth in
distant cognitive connections.

Morillo, Bordons, and Gomez (2001, 2003) provided complementary evidence
at the journal and category level. Between 1981 and 1996, the ISI journal
classification system added 38 new subject categories, of which 21 appeared in
engineering alone — a 154 percent increase in that field’s journal count. The
new categories exhibited systematically higher interdisciplinarity: 69 percent
were multi-assigned to more than one category (compared to 55 percent of older
categories), and they showed 28 percent stronger inter-category link strength and
30 percent greater disciplinary diversity. Fully 80 percent of the new categories
fell into clusters characterized by high interdisciplinarity. This pattern suggests
that the growth of science proceeds through simultaneous fragmentation and
hybridization — new specialties emerge at disciplinary boundaries and inherit
an interdisciplinary character from their origins.

The Polysemy Problem

Interdisciplinarity itself is not a unitary concept. Cantone (2024) emphasizes
that IDR is a “polysemous construct” — a term that carries multiple, partially
overlapping meanings across scholarly communities and policy contexts. A
physicist collaborating with biologists, a data scientist applying methods across
domains, and a social scientist synthesizing theories from multiple disciplines are
all called “interdisciplinary,” yet the nature and depth of their boundary-crossing
differ qualitatively. This polysemy means that any measurement system must
either select a specific operational definition of interdisciplinarity or explicitly
accommodate multiple dimensions. The taxonomy presented in Section 3 follows
the latter strategy.



The polysemy problem is compounded by a cognitive—social distinction that cuts
across all definitions (Cantone, 2024). Cognitive approaches measure interdis-
ciplinarity through the diversity of knowledge inputs — references, methods,
theoretical frameworks — and thus track epistemological breadth. Grouping
approaches measure it through social structures — co-authorships, institutional
affiliations, panel compositions. Semantic approaches analyze textual content
— keywords, abstracts, full text — to detect topical boundary-crossing. Each
captures a different facet of the phenomenon, and high scores on one dimension
need not correlate with high scores on another. The practical consequence is
that researchers who self-identify as interdisciplinary may not register as such
on bibliometric indicators, and vice versa (Zwanenburg, 2022). This discordance
between self-reported and measured interdisciplinarity is not merely a calibration
problem; it reflects genuinely different construals of what the term means.

Morillo, Bordons, and Gomez (2003) introduced a further distinction between
“big interdisciplinarity” — connections between distant disciplinary areas — and
“small interdisciplinarity” — connections between neighboring categories within
the same broad field. Applied Chemistry, for instance, exhibited 83 percent multi-
assigned journals and 55.6 percent external (cross-area) links, while Polymer
Science showed only 39 percent multi-assignation and 33.3 percent external links.
The big/small distinction has direct implications for indicator design: an index
sensitive only to variety will conflate these two qualitatively different patterns,
whereas one that incorporates disparity will distinguish them.

Epistemological Challenges

Beyond polysemy, the measurement of interdisciplinarity confronts several epis-
temological difficulties that constrain what indicators can legitimately claim
to capture. The most fundamental is the instability of the disciplinary clas-
sification systems on which all bibliometric indicators depend. The IST Web
of Science subject categories — the most widely used classification — achieve
only approximately 50 percent alignment with citation-based cluster solutions
(Boyack, 2005), and the match with network-derived classifications is similarly
imperfect (Leydesdorff, 2006). As of recent counts, the system comprises 254
subject categories, with 39 percent of journals assigned to more than one category.
While Rafols and Leydesdorff showed that these misalignments have limited
effects on aggregate science maps, they can substantially affect individual-level
indicator values.

A related problem concerns “horizontal” disciplines — broad categories such as
Biology, Physics, Chemistry, or the catch-all Multidisciplinary Sciences — which
exhibit artificially low multi-assignation precisely because journal classification
policies limit excessive dispersion across categories (Morillo, Bordons, and Gomez,
2003). Journals like Nature, Science, and PNAS appear in Multidisciplinary
Sciences yet produce low interdisciplinarity scores under standard indicators
despite publishing work that spans the entire disciplinary spectrum. This signals
a deeper epistemological concern: the categories we use to define disciplinary



boundaries are themselves artifacts of administrative and historical convention,
not stable features of the knowledge landscape (Cantone, 2024). Any indicator
built on such classifications inherits their contingency.

Conceptual vs. Empirical Validity

A further complication is the gap between conceptual definitions and empiri-
cal operationalization. An indicator may have a clear theoretical motivation
(e.g., “diversity of knowledge inputs”) yet fail to discriminate meaningfully when
applied to real data. Wang and Schneider (2020) documented this problem
systematically: measures that should be theoretically equivalent produce incon-
sistent and sometimes contradictory rankings when applied to the same dataset.
Leydesdorff et al. (2019) showed that Rao-Stirling diversity values often differ
only at the third decimal place across researchers, limiting practical discrimina-
tory power. These findings underscore the need for empirical validation of any
proposed indicator, not merely theoretical justification.

The validity crisis has multiple dimensions (Zwanenburg, 2022). Content validity
is threatened by the disparity between the conceptual richness of interdisciplinar-
ity — which encompasses variety, balance, and disparity — and the tendency of
individual indicators to capture only one or two of these facets. Domain validity
is undermined by the multiplicity of classification systems and the ambiguity of
journal-to-category allocations. Coherence validity requires consistency across
alternative operationalizations of the same construct, yet empirical studies repeat-
edly find that notionally equivalent measures produce divergent results. Rafols
(2019) argued that most existing indicators lack either analytical validity (they
do not measure what they claim to measure) or social robustness (they are not
perceived as meaningful by the communities they evaluate), and that responsible
metrics require both. The principles of robustness, humility, transparency, and
sensitivity to epistemic diversity that Rafols articulated provide a normative
framework that any proposed measurement system should satisfy.

A distinct but related problem is the confounding of interdisciplinarity with
research quality. Indicators do not record a pre-existing property of “quality”
or “excellence”; rather, as Rafols (2019) argued, they enact these categories
— outside assessment practices, such properties have no independent existence.
When interdisciplinarity indicators are used alongside or in combination with
citation-based quality proxies, the risk of circular reasoning is acute: interdisci-
plinary work may receive higher citations precisely because it reaches broader
audiences, not because it is intrinsically superior. The panel proposed in Section
4 treats quality as orthogonal to interdisciplinarity characterization, following the
principle that the panel should describe the type of boundary-crossing without
adjudicating its merit.



Methodological Pluralism

The diversity of conceptual perspectives reviewed above has given rise to a corre-
spondingly diverse toolkit of measurement approaches. At the most established
end, the Rao-Stirling diversity index captures variety, balance, and disparity in
a single expression, distinguishing it from Shannon entropy and the Herfindahl
index, which incorporate no measure of inter-category distance (Porter and
Rafols, 2009). At the journal and category level, the Salton cosine index nor-
malizes shared journal counts between two categories by the geometric mean of
their sizes, providing a symmetric measure of inter-category link strength that
ranges from zero to one (Morillo, Bordons, and Gomez, 2003). Multi-assignation
patterns — whether a journal’s secondary categories fall within the same broad
area (internal, or “small” interdisciplinarity) or across areas (external, or “big”
interdisciplinarity) — offer a complementary structural perspective.

Different indicators are appropriate at different levels of aggregation. Journal
multi-assignation in the ISI system provides a macro-level view that is easy to
apply but coarse in resolution. JCR citation and reference patterns operate at
the category level and are more sensitive to disciplinary dynamics. Detailed
section-level analyses (e.g., using Chemical Abstracts sections) offer journal-
level precision but require domain-specific infrastructure (Morillo, Bordons, and
Gomez, 2001). More recent proposals advocate semi-qualitative, contextual
methods — including overlay maps on a base science map that visualize variety,
balance, and disparity simultaneously — as alternatives to or complements
for scalar indices (Rafols, 2019). The guiding principle is that of “indicators
in the plural”: no single metric suffices, and responsible evaluation requires
triangulation across methods and levels of analysis. The multi-component panel
developed in Section 4 is designed in this spirit.

A Taxonomy of Interdisciplinarity Indicators

We organize the indicator literature along two axes: the conceptual dimension of
interdisciplinarity being measured, and the methodological family of the indicator.
This yields a structured map of the field that clarifies what each indicator actually
captures and where gaps remain.

Diversity Indicators

Diversity indicators measure the heterogeneity of a researcher’s knowledge in-
puts — typically the disciplinary spread of cited references. They are the most
extensively studied family of interdisciplinarity measures, and any credible as-
sessment of IDR at the paper, author, or institutional level must reckon with the
conceptual and computational choices embedded in their design. This subsection
provides a systematic treatment of the principal index families, the similarity
matrices they require, the empirical evidence on their validity, and the practical
difficulties that arise when one applies them to real bibliometric data.



Stirling’s three-property framework

The theoretical foundation for most modern diversity indicators is Stirling’s
(2007) decomposition of diversity into three properties: wvariety (the number
of distinct categories to which elements are assigned), balance (the evenness of
the distribution of elements across those categories), and disparity (the degree
of difference between the categories themselves). A fully satisfactory diversity
measure should be sensitive to all three properties simultaneously. In practice,
however, many widely used indices capture only one or two of the three, which
is a principal source of disagreement among empirical studies.

Measures capturing variety and balance only

Several classical indices from ecology and economics have been adapted for
IDR measurement. These indices register variety and balance but are blind to
disparity — they treat a shift from Organic Chemistry to Analytical Chemistry
identically to a shift from Organic Chemistry to Sociology.

Shannon entropy. For a publication whose references fall in categories i =
1,...,n with proportions p;, the Shannon entropy is H = — >, p; Inp;. It reaches
its maximum Inn when references are spread uniformly across n categories and
equals zero when all references fall in a single category.

Simpson diversity. The Simpson index Dgjm =1—)", p? gives the probability
that two references drawn at random belong to different categories. It is bounded
between 0 and 1—1/n and is more sensitive to dominant categories than Shannon
entropy.

Brillouin index. A finite-sample analogue of Shannon entropy, defined as
HB = [log(}_, ¢i)! — > ;loge;!]/ >, ¢i where ¢; is the count of references in
category i. Wang and Schneider (2020) found Shannon and Brillouin to be
nearly perfectly correlated (r = 1.00 in their Table 5), rendering them empirically
redundant.

Inverted Gini coefficient. The Gini coefficient measures concentration; 1 — G
converts it into a balance indicator. Like Shannon, it is insensitive to the identity
of the categories across which references are distributed.

An important empirical regularity is that these non-disparity indices are moder-
ately to strongly correlated among themselves (Wang and Schneider, 2020, Table
5, with pairwise Pearson correlations between Simpson, Shannon, Brillouin, and
1 — Gini ranging from 0.60 to 1.00), but only weakly correlated with disparity-
incorporating indices. The two families thus capture genuinely different aspects
of diversity.

The Rao-Stirling diversity index

The Rao-Stirling index is the most widely used indicator that incorporates all
three of Stirling’s properties (Porter and Rafols, 2009; Rafols and Meyer, 2009).



In its standard form it is defined as
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where p; is the proportion of references in category ¢ and d;; = 1 — s is

the dissimilarity between categories i and j, derived from a similarity matrix
S = [s;;]. When all categories are maximally dissimilar (d;; = 1 for all 7 # j),
the Rao-Stirling index reduces to the Simpson index. When the similarity matrix
carries real structure, the index penalises diversity among close categories and
rewards diversity among distant ones.

Alpha-beta generalisation. Stirling (2007) proposed a more general family
Dop=>; 25 45 (pip;)?, where the exponents a and 3 govern the relative weight
given to disparity versus balance. The conventional Rao-Stirling choice sets
a = 8 = 1. Increasing « amplifies the contribution of highly disparate category
pairs; increasing [ amplifies the contribution of well-balanced distributions. In
most empirical scientometric work o = 8 = 1 is adopted without discussion,
but the sensitivity of results to these parameter choices has received limited
investigation. Researchers should be aware that changing these exponents can
shift rankings of papers or fields, even when the underlying data are identical.

The eight-variant study. Wang and Schneider (2020) tested eight variants
of the Rao-Stirling index by crossing two classification-level choices (individual-
publication average RS_P versus aggregated RS__G) with four dissimilarity-
matrix specifications (using either the Salton vector cosine SC' or the Ochiai scalar
cosine SO, each converted to dissimilarity by either 1 —s or 1/s). The results are
sobering. Pearson correlations between variants using the same cosine formula
but different dissimilarity transformations can be as low as r = 0.30 (between
RS_G[1 — S¢] and RS_G[1/S¢]); correlations between variants using different
cosine formulas with the same transformation can be as low as r = 0.18 (between
RS_P[1—S¢] and RS_P[1—-50]). In an in-depth analysis of five selected Web of
Science subject categories (Nanoscience, Biochemistry, Library and Information
Science, Law, and Mathematics), the rankings produced by different variants
frequently contradicted one another. For instance, Mathematics was ranked 221st
out of 224 categories by RS_P[1 — S¢] but 79th by RS__G[1 — S¢], despite the
strong overall Spearman correlation (p = 0.91) between these two variants. Wang
and Schneider concluded that “the current measurements of interdisciplinarity
should be interpreted with much caution.”

Hill-type true diversity measures

Zhang, Rousseau, and Glanzel (2016) proposed Hill-type measures adapted from
the ecological diversity literature (Hill, 1973; Jost, 2006; Leinster and Cobbold,
2012). The general form is
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where S = [s;;] is a similarity matrix with s; =1 and 0 < s;; = s;; <1, and ¢
is a sensitivity parameter. The special case ¢ = 2 yields
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which is related to, but distinct from, the Rao-Stirling index: substituting d;; =
1 — s;5, one obtains 2D¥ = 1/(1 — A). While the Rao-Stirling index is bounded
between 0 and 1, 2D® ranges from 1 (a single category, or perfectly similar
categories) to N (all categories equally abundant and maximally dissimilar),
which confers on it the interpretation of an “effective number of disciplines.”

The mathematical advantage of Hill-type measures is that they satisfy six desir-
able properties that entropy-based indices violate (Jost, 2006, 2009): symmetry,
zero-output independence, the transfer principle, scale invariance, the replication
principle, and normalisation. The replication principle is especially important
for policy discussions: if m equally diverse, non-overlapping research portfolios
are pooled, a true diversity measure should give the pooled portfolio a diversity
of m - Dy. Shannon entropy and the Simpson index fail this test. Only when
working with true diversities does it make sense to discuss percentage changes
in diversity — a property that makes Hill-type measures particularly attractive
for longitudinal and comparative studies. In an empirical demonstration, Zhang,
Rousseau, and Glanzel (2016) showed that 2D® discriminates more effectively
than the Rao-Stirling index among journals spanning a range from specialised
mathematics to multidisciplinary science.

Multi-assignation and the Morillo-Bordons-Gomez approach

An entirely different tradition constructs interdisciplinarity indicators from
the multi-assignation of journals to classification categories rather than from
reference-list analysis. Morillo, Bordons, and Gomez (2001) introduced a suite
of indicators for the ISI (now Clarivate) subject-category system: the percentage
of multi-assigned journals in a category, the percentage of journals assigned to
categories outside the research area, and the concentration of references across
categories (measured via the Pratt index). These indicators were validated
through a case study in Chemistry, where Applied Chemistry — a “horizontal”
discipline with 83% multi-assigned journals — consistently scored higher than
Polymer Science (39% multi-assigned) across all indicators.

In a follow-up study, Morillo, Bordons, and Gomez (2003) extended the analysis
to all IST categories and established a four-cluster typology of disciplines based
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on multi-assignation percentage, external link percentage, diversity of links,
and strength of links (the last measured by the Salton cosine of shared journal
sets). Two of the four clusters were characterised as reflecting, respectively,

“big interdisciplinarity” — in which links connect categories from different re-
search areas (e.g., Biotechnology linking Life Sciences and Engineering) — and
“small interdisciplinarity” — in which links remain within the same area (e.g.,

Transplantation linking Surgery and Immunology). This distinction between
distant-category and close-category integration anticipated the later emphasis
on disparity in the Stirling framework.

These multi-assignation indicators have distinct advantages: they are straight-
forward to compute, do not require a similarity matrix, and can be applied
at the macro level (research areas) as well as the meso level (categories and
journals). Their disadvantage is sensitivity to the ISI classification scheme it-
self — particularly for “horizontal” categories such as Chemistry or Physics,
where ISI artificially limits multi-assignation. They also do not operate at
the individual-paper level, which limits their applicability in researcher-level
evaluation.

Similarity matrix estimation

All disparity-sensitive measures depend on a matrix S (or its complement
D = 1 — S) encoding pairwise relationships among classification categories.
The standard approach constructs S from inter-category citation flows us-
ing a cosine similarity. Historically, this construction extends journal-journal
citation mapping methods developed for JCR-scale classification work (Ley-
desdorff, 2006). Wang and Schneider (2020) distinguished two variants: the
Salton vector cosine SC(i,j) = Y, cik Cjk/\/ Dk €k * 2ok Cop» Which compares
the citing profiles of two categories, and the Ochiai scalar cosine SO(i,j) =
(cij + ¢ji)// (g ik + 2ok cki) 0ok €k + Do Ckj), which uses direct bilateral ci-
tation exchange. These two cosine formulations can yield substantially different
similarity landscapes: the SO-based matrices are extremely left-skewed (most
pairs have dissimilarity close to 1), which means that SO-based Rao-Stirling
variants approach the Simpson index in practice.

A further degree of freedom is the transformation from similarity to dissimilarity.
The standard choice d;; = 1 —s;; is intuitive but not the only option; d;; = 1/s;;
has also been used (Jensen and Lutkouskaya, 2014). Wang and Schneider (2020)
showed that the combination of cosine variant and dissimilarity transformation
accounts for more variance in Rao-Stirling outcomes than any other single
methodological decision.

The requirement for a large citation database is itself a barrier to entry. Can-
tone, Zheng, Tomaselli, and Nightingale (2025) recently proposed an alternative:
estimating similarity matrices directly from large language models (LLMs). In
their experimental protocol, ChatGPT, Gemini, and Claude were each prompted
to produce numerical similarity estimates for pairs of disciplines under two
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taxonomies. Across 228 sampled matrices (16,200 individual estimates), they
evaluated five properties: precision (inverse variance across repeated identical
prompts), agreement (cross-model correlation), resilience (sensitivity to semanti-
cally trivial rewording of discipline names), robustness (sensitivity to reordering),
and explainability. Gemini achieved estimates closest to traditional citation-
based matrices; Claude showed a balanced profile; and ChatGPT exhibited
superior resilience to prompt variation. While none of the models reached
perfect agreement with citation-based baselines, the authors concluded that
LLM-based estimation is “sufficiently well” suited for the task and offers a low-
cost, database-free alternative that could democratise access to disparity-sensitive
IDR measurement.

Normalization, calibration, and classification granularity

A pervasive difficulty with all diversity indicators is their dependence on the
classification system. A publication may appear more interdisciplinary under
the 250-category Web of Science scheme than under the 40-category OECD
scheme simply because finer granularity creates more category boundaries to
cross. Zhang, Rousseau, and Glanzel (2016) demonstrated this directly: journal
rankings by 2D shifted substantially when measured against the 68 ECOOM
subfields versus the 16 ECOOM major fields, with Spearman correlations between
the two rankings of only 0.79. This classification sensitivity is dampened, though
not eliminated, when the measure incorporates disparity — splitting a field
into subfields produces subfields that are similar, and their contribution to
disparity-sensitive indices is accordingly attenuated (Zwanenburg, Nakhoda, and
Whigham, 2022).

Field normalization raises further complications. A paper in Mathematics citing
three categories may represent greater knowledge breadth, relative to disciplinary
norms, than a paper in Biomedicine citing ten. Without baseline correction,
raw diversity scores penalise fields that are naturally specialised and reward
fields that are inherently diffuse. Leydesdorff, Wagner, and Bornmann (2019)
proposed a decomposed diversity measure (DIV) as the product of normalised
variety, balance (1 — Gini), and disparity components, allowing each component
to be inspected separately. Whether these components should be combined
multiplicatively (Leydesdorff, Wagner, and Bornmann, 2019) or additively (Mutz,
2022) remains an open question that the definition of IDR alone does not resolve
(Zwanenburg, Nakhoda, and Whigham, 2022).

Validity assessment: the Zwanenburg evaluation

The most systematic validity assessment to date is that of Zwanenburg, Nakhoda,
and Whigham (2022), who evaluated 21 measures of IDR against eight criteria
derived from a synthesis of 25 definitions of interdisciplinarity. The eight criteria
are organised under four headings:

1. Applicability: (1a) Multi-object — the measure should be applicable to pa-
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pers, authors, institutions, journals, and disciplines; (1b) Size independence
— scores should not vary merely because the object of study represents
more or fewer publications.

2. Integration evidence: (2) The measure should be based on evidence that
knowledge is actually integrated, not merely that multiple disciplines are
represented. Paper-level reference analysis provides adequate evidence;
aggregated journal-level citation counts do not.

3. Discipline identification: (3a) Valid allocation of references to disciplines;
(3b) Identification of all source disciplines (completeness); (3¢) Low clas-
sification bias — the measure should not produce wildly different scores
when applied to classifications of different granularity.

4. Diversity capture: (4a) Sensitivity to all three diversity dimensions (variety,
balance, disparity); (4b) Decomposability into separate scores for each
dimension.

Of the 21 measures evaluated, only six met the criterion for evidence of knowledge
integration (criterion 2): the Rao-Stirling index, the Hill-type measure, the
Coherence measure, the DIV indicator, the overall diversity indicator (d;,.),
and the Reverse Simpson Index applied at the paper level. The remaining 15
either operated at aggregate levels that preclude integration evidence, or relied
on classification overlap rather than citation-based evidence. Within the six that
met criterion 2, the Rao-Stirling and Hill-type measures also satisfied criterion
4a (all diversity aspects captured) and criterion 3¢ (low classification bias), but
neither was decomposable into separate variety, balance, and disparity scores
(criterion 4b). Only the DIV measure and the overall diversity indicator d;,e
met all four of criteria la, 1b, 2, 3c, 4a, and 4b.

Zwanenburg, Nakhoda, and Whigham cautioned that no single measure satis-
fied all eight criteria, and that the criterion for valid discipline allocation (3a)
remained unresolved for every measure relying on journal-to-category mappings
— approximately 30% of references in their institutional database were assigned
to multiple WoS categories, creating allocation ambiguities that cascade into
inflated diversity scores.

Author versus reference diversity

The choice of what to diversify introduces a further dimension. Most indi-
cators measure diversity over the reference list, but an alternative tradition
measures diversity over the disciplinary affiliations of co-authors. Abramo,
D’Angelo, and Zhang (2018) compared the two approaches using 43,667 Italian
university publications, partitioned into single-author papers (by construction
non-interdisciplinary under the author method), multi-author single-field papers,
and multi-field papers. They found general convergence: reference-list diversity
increased with the number of distinct disciplinary sectors (SDSs) reflected in the
byline, and disparity was higher when the authors’ SDSs spanned different uni-
versity disciplinary areas (UDAs) rather than the same UDA. However, striking
individual exceptions emerged. The three publications with the highest inte-
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grated diversity score in the entire dataset were single-author papers, precisely
the “intrapersonal integrators” whose knowledge breadth cannot be detected by
the author method. This finding highlights a structural limitation of author-
based approaches and underscores the complementary value of reference-based
analysis for identifying individual knowledge integration.

Summary

The landscape of diversity indicators is rich but fragmented. Measures that
incorporate pairwise dissimilarity (Rao-Stirling, Hill-type, DIV) form one empir-
ical cluster; measures that do not (Shannon, Simpson, multi-assignation counts)
form another, and inter-group correlations are weak (Wang and Schneider, 2020).
The choice of similarity matrix specification accounts for as much variance in
outcomes as the choice of index formula. No single measure satisfies all validity
criteria (Zwanenburg, Nakhoda, and Whigham, 2022), and LLM-based similarity
estimation opens a promising but still immature alternative to citation-derived
matrices (Cantone, Zheng, Tomaselli, and Nightingale, 2025). For applied evalu-
ation, the implication is clear: diversity indicators should be reported alongside
their computational specifications (classification scheme, similarity method, dis-
similarity transformation, aggregation level), and conclusions that depend on a
single indicator variant should be treated with caution.

Coherence Indicators

Diversity indicators, however richly specified, answer only one question: how
heterogeneous are the knowledge inputs? They are silent on whether those
heterogeneous inputs have been woven into a unified intellectual fabric or merely
placed side by side. Rafols and Meyer (2009) introduced the concept of coherence
to fill this gap, defining it as “the extent to which specific topics, concepts, tools,
data, etc. used in a research process are related” (p. 175). Whereas diversity
captures the categorical breadth of references, coherence captures the relational
structure among the items within those categories — the intensity of their mutual
integration.

The distinction matters for evaluation. High diversity alone does not guarantee
that disparate knowledge sources have been synthesized; it may reflect mere
juxtaposition or polymathic breadth across unrelated literatures. Coherence
supplies the missing signal. Moreover, the functional interpretation of coherence
depends on the unit of analysis. High coherence in an article’s reference list
indicates that the article builds on an established, internally connected specialty.
High coherence across a research centre’s publications indicates that the centre
is achieving its integrative mission. Low coherence, conversely, signals that
previously unrelated bodies of knowledge are being brought into contact — a
state of potential interdisciplinary integration that may mature over time.
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Bibliographic coupling operationalization

Rafols and Meyer (2009) operationalized coherence through bibliographic cou-
pling: two publications are linked to the extent that they share references, and
the density of the resulting network serves as a coherence indicator for the set.
The similarity between any two publications a and b is computed using Salton’s
cosine,

g Iy

Sap = T
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where r, is the binary reference vector of publication a. Cosine normalization
controls for the total number of references in each publication, a desirable
property that guards against size-driven artefacts.

From the resulting similarity matrix two network-level coherence indicators are
derived:

Mean linkage strength (S). The mean of the off-diagonal entries of the
normalized bibliographic coupling matrix,

2
5= N(N—I)ZS“b

a<b

where NV is the number of publications. In a binary network S reduces to ordinary
network density; in a valued network it captures both the proportion of realized
links and their average intensity. .S is bounded between 0 and 1 and was found to
be scale-invariant across network sizes ranging from 10 to 1,275 nodes in Rafols
and Meyer’s kinesin benchmark sample.

Mean path length (L). The average shortest-path distance between all
pairs of nodes in the binarized similarity network. Binarization requires a
threshold 7 below which pairwise similarities are treated as zero; Rafols and
Meyer adopted 7 = 0.05 (equivalent to requiring at least one shared reference
in a 20-reference bibliography) to suppress spurious links arising from highly
cited general references. Lower values of L indicate a more compact, internally
connected body of work. In their molecular-motors sample, S and L were highly
correlated (r ~ 0.95), suggesting that the two indicators capture essentially the
same structural property and that S alone may suffice in many applications.

The choice of bibliographic coupling — rather than co-citation — as the under-
lying relation is deliberate. Bibliographic coupling is forward-looking: it reflects
the knowledge sources that authors chose to draw upon at the time of writing,
rather than the audience patterns that emerge after publication. This makes
it applicable to recent publications for which a citation window has not yet
accumulated.
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Empirical evidence: orthogonality from diversity

Rafols and Meyer (2009) tested their coherence indicators on 12 articles drawn
from the molecular motors literature. Diversity and coherence were found to
be uncorrelated — the two dimensions offered “orthogonal perspectives” on
interdisciplinarity. Coherence values spanned a wide range (S from 0.024 to
0.113). At one extreme, Noji (1997) exhibited S = 0.024: its reference network
showed a clear divide between the bioenergetics and linear-motor literatures,
connected only through a single review article. This low coherence signalled a
seminal act of integration in which two previously separate research strands were
being brought into contact for the first time. At the other extreme, Tomishige
(2002) exhibited S = 0.113: it drew on what had by then become an established
interdisciplinary specialty, and its references formed a dense, internally connected
cluster.

Wang and Schneider (2020) confirmed the orthogonality finding at a much
larger scale, computing 16 interdisciplinarity measures for 224 Web of Science
Subject Categories. Their coherence indicator — adapted from Wang (2016),
who operationalized it as the number of citation links between cited references
belonging to different categories weighted by their dissimilarity — showed only
weak to moderate correlations with the diversity family: » = 0.23 with multi-
assignment proportion, r = 0.44 with Simpson diversity, r = 0.46 with Shannon
entropy, and r = 0.50 with the inverted Gini coefficient. The correlation with
betweenness centrality was negligible (r = —0.03), and the correlation with the
cluster coefficient was negative (r = —0.36). These results place coherence in
a distinct empirical cluster from categorical diversity measures, reinforcing the
claim that it captures a genuinely independent dimension of interdisciplinarity.

The diversity—coherence framework

The joint observation of diversity and coherence gives rise to a useful interpretive
matrix, proposed as a two-dimensional framework by Rafols and Meyer (2009).
Low diversity combined with high coherence characterizes specialized disciplinary
research — tightly integrated work within a single paradigm. Low diversity
with low coherence indicates that distant specialties within the same discipline
are being connected, without yet achieving full integration. High diversity with
low coherence represents the most nascent form of interdisciplinary integration:
hitherto unrelated bodies of knowledge are being juxtaposed for the first time,
as in the Noji (1997) case. Finally, high diversity with high coherence marks
the mature state of specialized interdisciplinary research, where formerly distant
knowledge sources have been woven into a stable intellectual fabric.

The framework implies a trajectory of knowledge integration that moves from
low to high coherence over time: pioneering integration gradually consolidates
into established interdisciplinary specialties. For evaluation purposes, this tra-
jectory enables a distinction between early-stage integration (high potential, low
consolidation) and mature interdisciplinary fields (high potential realized), a
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nuance that scalar diversity measures alone cannot capture.

Alternative operationalizations

Betweenness centrality. Leydesdorff and Rafols (2011) explored betweenness
centrality as an alternative coherence-related indicator at the journal level.
Freeman’s betweenness centrality, defined as

Gijk
ik

9i =
3k

kA
where gji, is the total number of geodesics between nodes j and k and g;;, the
number of those geodesics passing through ¢, measures the extent to which a
journal occupies an intermediary position in the citation network. However,
raw betweenness is confounded by size: large multi-disciplinary journals such
as Nature and Science score highly simply because of their degree centrality.
Leydesdorff and Rafols addressed this by computing betweenness in cosine-
normalized networks, after which social-science journals emerged as the most
prominent interdisciplinary bridges across 8,207 JCR journals. In a rotated
factor analysis (Bollen et al., 2009), betweenness loaded near the origin — almost
orthogonal to both citation-based and vector-based indicators — suggesting that
it captures a distinct positional dimension.

Distance-measure sensitivity. Leydesdorff and Rafols (2011) also documented
a striking sensitivity of Rao-Stirling diversity to the choice of distance matrix.
When they computed the indicator using (1 — cos) versus relative Euclidean
distances across the same 8,207 journals, the Spearman rank-order correlation
between the two resulting interdisciplinarity rankings was p = —0.012 in the cited
direction and p = —0.015 in the citing direction — effectively zero and, in the
latter case, nominally negative. In a rotated factor analysis the Euclidean-based
variant loaded on a different component from all other indicators, confirming that
the two distance formulations capture fundamentally different structural features
of the citation network. This dramatic finding underscores that the choice of
distance measure is not a minor technical detail but a first-order determinant of
measured interdisciplinarity.

IKF homogeneity. Zhou, Guns, and Engels (2023) proposed the Interdisci-
plinary Knowledge Flow (IKF) framework, which decomposes inter-field citation
relationships into three aspects: broadness (the fraction of publications that cite
a given external discipline), intensity (the share of outward citations directed
at that discipline), and homogeneity (the fraction of a discipline’s references
that are co-cited by the target discipline). The homogeneity dimension is the
most directly related to Rafols and Meyer’s coherence concept: it measures
cognitive similarity via the overlap of knowledge bases. Empirically, homogene-
ity correlates moderately with broadness (R? = 0.47) but only weakly with
intensity (R? = 0.25), indicating that these aspects capture different facets of
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the interdisciplinary relationship. A revealing pattern is that low homogeneity
combined with high broadness characterizes methodological disciplines (e.g.,
Applied Mathematics cited by Ecology or Genetics): their tools diffuse broadly
despite a large cognitive distance from the receiving field.

Computational considerations

All coherence indicators require a pairwise similarity or coupling computation
whose cost grows as O(N?) in the number of publications or journals. For
betweenness centrality the cost is higher, at O(N?) in the naive implementation,
because shortest-path enumeration is required on the full network. In practice,
Salton’s cosine is preferred for constructing the coupling matrix because it is
non-parametric, handles sparse reference vectors naturally, and normalizes for
publication length. The co-occurrence matrix itself can be obtained efficiently
via matrix multiplication (AAT for bibliographic coupling, AT A for co-citation).
Threshold selection when binarizing valued networks remains a practical trade-off
between noise filtering and information loss; the common choice of 7 = 0.05 is
adequate for moderately sized reference lists but may need adjustment for fields
with substantially different citation practices.

Summary

Coherence indicators complement diversity by measuring the depth of knowledge
integration rather than the breadth of categorical spread. Multiple operational-
izations are available — bibliographic coupling density, betweenness centrality,
and co-citation homogeneity — and the empirical evidence consistently shows
that they are only weakly correlated with diversity measures (typically r < 0.5),
confirming that coherence constitutes an independent measurement dimension.
Combined with diversity, coherence enables a richer characterization that dis-
tinguishes potential from realized integration, a distinction the next subsection
builds upon as it examines indicators that explicitly combine both dimensions.

Diffusion Indicators
Conceptual foundations

The indicators examined in the preceding subsections — diversity, coherence,
and their composites — all look backward from a publication to the knowledge it
draws upon. Diffusion indicators invert the causal direction: they look forward
from a publication to the new bodies of research that cite it, measuring the
cross-disciplinary reach of knowledge outputs rather than the heterogeneity
of knowledge inputs (Cantone, 2024; Leydesdorff, Wagner, and Bornmann,
2019). Formally, the reference vector p(z) that underlies integration measures is
replaced by a citation vector q(z), where ¢;(z) denotes the proportion of citing
publications that belong to disciplinary category <.

Cantone (2024) situates diffusion at the end of a temporal causal chain: cognition
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precedes production, and diffusion follows both. Whereas integration captures the
disciplinary breadth of inputs that shaped a piece of research, diffusion captures
the disciplinary breadth of the communities that subsequently absorbed it. This
asymmetry is consequential for evaluation. A study that integrates knowledge
from many fields may nevertheless remain confined to its home discipline in
terms of readership; conversely, a narrowly based study may diffuse widely if
its methods or findings prove transferable. Diffusion therefore constitutes an
independent measurement dimension, one that complements integration rather
than duplicating it.

Operational definitions

The simplest operationalization of diffusion is the fraction of citations received
from outside the primary field, analogous to the proportion of external references
(Poutside) used for integration. More informative measures apply the same
diversity machinery introduced in Section 3.1 but to the citation vector q(x)
instead of the reference vector p(z).

Leydesdorff, Wagner, and Bornmann (2019) propose the DIV indicator, which
decomposes diversity into its three Stirling components and applies them to the
cited direction. For a journal c,
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where n. is the number of Web of Science categories with non-zero citation shares
(variety), N the total number of categories available, d;; = 1 — cos(v;, v;) the
disparity between categories i and j, and G. the Gini coefficient measuring the
unevenness of the citation distribution across categories. The balance component
enters as (1—G..): perfect evenness yields G. = 0 and maximum balance, whereas
concentration in a single category yields G. — 1 and vanishing balance. Gini is
computed via the ascending-order formula,

n
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where the z; are the citation shares sorted in non-decreasing order. The three-
way factorization makes DIV monotonically increasing in each component, a
property that the Rao-Stirling index lacks because RS combines variety and
balance ex ante through the Simpson concentration index (Leydesdorff, Wagner,
and Bornmann, 2019).

G:
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A complementary measure is the coherence of the citing distribution,

C= sz‘j di;

i#j

which captures the average cognitive distance among co-occurring citation cate-
gories. When applied to the cited direction, high coherence indicates that the
citing communities themselves span distant parts of the disciplinary landscape —
a strong signal of diffusion breadth.

Temporal dynamics and measurement challenges

Unlike reference-based indicators, which are fixed at publication time, diffusion
measures are inherently dynamic. Citations accumulate over months and years,
so a diffusion score computed one year after publication may differ substantially
from one computed five years later. This creates a time-window dependency
that integration measures do not face. Furthermore, citations are not under
author control: the same publication may attract citations from unexpected
fields depending on shifts in research fashion, policy relevance, or methodological
uptake (Cantone, 2024).

Three further complications arise. First, diffusion is confounded with scientific
impact: highly cited publications receive citations from more categories simply
by virtue of their citation volume, even if each individual citation comes from
within the home discipline. Any diffusion measure must therefore be interpreted
alongside total citation counts. Second, a non-trivial fraction of publications
receive zero or near-zero citations within typical evaluation windows, rendering
diffusion scores undefined or degenerate — a censoring problem with no clean
analogue on the reference side. Third, citation practices vary across disciplines
in both volume and latency, meaning that raw diffusion scores are not directly
comparable across fields without normalization.

These challenges make diffusion indicators most appropriate for longitudinal or
time-series analyses, where the temporal evolution of cross-disciplinary reach
can be tracked explicitly rather than frozen at an arbitrary cutoff.

Empirical patterns from large-scale studies

Leydesdorff, Wagner, and Bornmann (2019) computed DIV in both the citing
and cited directions for 11,487 journals indexed in the Journal Citation Reports
(JCR 2016). In the cited direction (diffusion), PLOS ONE achieved the highest
DIV score (0.142), followed by Science (0.125) and Nature (0.124) — journals
whose editorial scope is broad enough to attract citing communities from across
the disciplinary map. Notably, the Rao-Stirling diversity index applied to the
same data produced a substantially different ranking: Daedalus-US (0.939),
Qualitative Inquiry (0.936), and Critical Inquiry (0.927) led, illustrating how
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measure choice can alter empirical conclusions even when the underlying data
are identical.

The divergence is instructive. RS is dominated by its disparity term, which
favours journals cited by a few very distant categories; DIV gives proportional
weight to variety and balance, rewarding journals that attract citations from
many categories in roughly even shares. In a factor analysis across the full
journal set, DIV in the cited direction loaded on the same factor as betweenness
centrality (p = 0.66) and impact factor, whereas RS loaded separately (p =
0.41 with betweenness). This pattern suggests that DIV captures a structural
intermediation role — journals that serve as conduits between disciplinary
communities — while RS captures a different aspect of cross-field reach that is
less aligned with network position.

Distinction from topic-based interdisciplinarity

Diffusion is sometimes conflated with a related but distinct concept: topic inter-
disciplinarity, defined as the degree to which a publication’s content addresses
themes from multiple disciplines. Xiang, Romero, and Teplitskiy (2025) dis-
entangle two dimensions that are often confounded in empirical work. Topic
interdisciplinarity is measured through the disciplinary classification of a pub-
lication’s title and abstract (e.g., OpenAlex concept tags), and reflects what
the work addresses. Knowledge-base interdisciplinarity is measured through the
disciplinary composition of the reference list, and reflects what the work draws
upon. The two correlate only moderately (r = 0.56), confirming that they are
not interchangeable.

Critically, the two dimensions carry opposite associations with peer review out-
comes. In an analysis of 128,950 STEM manuscripts submitted between 2018 and
2022, Xiang, Romero, and Teplitskiy (2025) find that a one-standard-deviation
increase in knowledge-base interdisciplinarity raises acceptance probability by
0.9 percentage points, while the same increase in topic interdisciplinarity lowers
it by 1.2 percentage points. The interaction term is positive and significant
(8 = 0.042): broad references mitigate the penalty incurred by interdisciplinary
framing. These findings underscore that the direction of disciplinary boundary-
crossing matters: integration (references) is rewarded; topical spanning (content)
is penalized unless supported by demonstrably broad knowledge inputs.

Relation to integration measures

Because diffusion and integration use the same mathematical machinery —
Stirling diversity, Gini balance, disparity matrices — applied to different input
vectors, a natural question is whether they are empirically related. Leydesdorff,
Wagner, and Bornmann (2019) report that the correlation between DIV in the
citing direction (integration) and DIV in the cited direction (diffusion) is positive
but far from unity, confirming that the two capture different phenomena. High
integration does not guarantee high diffusion, and vice versa.
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Cantone (2024) speculates that integrative work may serve as an antecedent
macro-factor for diffusion: research that synthesizes knowledge from multiple
fields may become cognitively accessible to a broader audience, creating a
“superspreader” effect. This hypothesis remains untested in the literature and
would require longitudinal designs linking integration scores at publication time
to diffusion trajectories in subsequent years.

Validity concerns and conceptual status

The conceptual status of diffusion within an interdisciplinarity measurement
framework is contested. Cantone (2024) argues that diffusion “defies the full
definition of IDR” because it measures a future effect of research rather than
a property of the research process. Under this view, diffusion is an outcome of
scientific activity — akin to impact — rather than an attribute of the activity
itself. Whether a publication is cited by distant disciplines depends on factors
largely external to the authors’ integrative effort: editorial policies of citing
journals, the availability of the work in relevant databases, and broader trends
in research policy.

This conceptual tension admits two resolutions. One may treat diffusion as a
legitimate dimension of interdisciplinarity, on the grounds that cross-disciplinary
reach is itself a form of boundary-crossing that evaluation frameworks should cap-
ture. Alternatively, one may treat diffusion as a consequence of interdisciplinarity
that is informative for policy but should not be conflated with the measurement
of interdisciplinary production. The distinction is not merely semantic: it deter-
mines whether diffusion indicators belong in a panel designed to characterize
research as it is produced or in a separate assessment of research as it is received.
Wang and Schneider (2020) note that different indicators may capture “different
understandings of such a multi-faceted concept as interdisciplinarity,” a warning
that applies with particular force to the integration—diffusion boundary.

Practical guidance and research gaps

Given the challenges outlined above, diffusion indicators are best suited to
retrospective impact assessment and longitudinal evaluation rather than ex ante
project selection or funding decisions. They are most informative when applied
with explicit time windows (e.g., five-year or ten-year citation windows) and when
accompanied by total citation counts that allow analysts to distinguish genuine
cross-disciplinary reach from the mechanical effect of high citation volume.

Several research gaps remain. Citation-side Gini coefficients and DIV scores are
not routinely computed in standard bibliometric toolkits, limiting their practical
uptake. The temporal structure of diffusion — whether cross-disciplinary citing
patterns stabilize or continue to evolve decades after publication — has received
little systematic attention. Finally, the hypothesized feedback loop between
integration and diffusion — whereby broadly integrative work attracts broader
citing audiences, which in turn stimulates further integration — remains an open
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empirical question that longitudinal panel designs are well positioned to address.

Novelty Indicators
Conceptual foundation

Novelty indicators address a question distinct from diversity: whether research
combines disciplinary elements in ways that are not merely heterogeneous but
genuinely nonconforming relative to established practice. A publication may
exhibit high diversity — drawing on many distant fields — yet low novelty if its
particular combination of fields has become routine, effectively constituting a
new “interdisciplinary discipline” (Cantone, 2024). Novelty captures disciplinary
innovation, not disciplinary breadth.

The conceptual core is divergence from a benchmark. Given a disciplinary
proportion vector p(zx) for a research unit « and a benchmark distribution p(E)
representing expected disciplinary composition, novelty is operationalized as a
function of the discrepancy between the two:

V = f(lp(x) — p(E)|).

The choice of benchmark, the functional form f, and the treatment of dis-
ciplinary similarity z(,7) distinguish the competing approaches reviewed be-
low. A revealing limiting case connects novelty to diversity: when p(z) and
p(F) have non-overlapping support, the squared divergence decomposes as
Sulpi(z) = pi(E)? =3, pi(@)* + 3, pi(E)?, where each summand is a rate-of-
repeat (Herfindahl) term — a diversity measure (Cantone, 2024). Divergence
thus generalizes diversity by incorporating prior expectations.

Statistical divergence approaches

Several families of divergence measures have been proposed for novelty quan-
tification. The simplest is the sum of squared differences between p(x) and
p(E), but it has seen no empirical adoption. Chi-squared divergence and related
information-theoretic measures (Kullback—Leibler, mutual information) suffer
from a common flaw: they are undefined when p;(E) = 0 for any category i
where p;(x) > 0, forcing analysts to ignore precisely the most novel disciplinary
contributions (Cantone, 2024).

Two alternatives avoid this singularity. The probabilistic Jaccard index compares
distributions through their overlap:

>, min(p; (x), pi(E))
Do max(pi (x), pi (E)) '

This is a normalized variant of generalized mutual entropy with a purely frequen-
tist interpretation (Moulton and Jiang, 2018). It is easy to compute but difficult

Ves(z) =1-
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to interpret in substantive terms (Cantone, 2024). The Hellinger distance takes
a geometric approach:

Viel(z) = % \/Z<\/ pi(x) — v/ Pi(E))2~

Hellinger distance offers stable scalings and well-understood metric properties
but depends on a Euclidean interpretation of probability space that is difficult
to communicate to non-specialist audiences (Cantone, 2024).

Neither the probabilistic Jaccard nor the Hellinger distance accounts for inter-
category similarity z(,7). A similarity-weighted extension replaces each propor-
tion p; with a smoothed version ;. (z) = [3_, pj(z) 2(i, 5)]/[>2; 22, pi(@) 2(4, j)],
which can then be substituted into any divergence formula (Cantone, 2024).
This extension brings novelty measurement into closer alignment with disparity-
aware diversity indices, but at the cost of requiring the same similarity matrix
infrastructure.

Permutation method

The most influential novelty measure in the bibliometric literature is the atypical-
combinations approach of Uzzi et al. (2013). Rather than comparing aggregate
distributions, it examines all pairwise co-occurrences of disciplinary categories
within a body of research. For each observed pair (i, j), a z-score is computed
against a randomized null model:

VUZZI(pZ,ja ) U[ei)j(:ﬂ)} s

pi,j (1‘ ) >0,

where e; j(x) and ole; j(z)] are the mean and standard deviation of the pair
frequency under permuted citation networks that preserve reference counts. The
method produces a distribution of atypicality scores within x, from which Uzzi
et al. derive two non-parametric summary statistics capturing conformity and
novelty.

The empirical claims that emerged from this framework were highly influential
for research policy. Uzzi et al. (2013) reported that the highest-impact science
is “primarily grounded in exceptionally conventional combinations” yet simulta-
neously features “intrusion of unusual combinations,” and that teams are more
likely than solo authors to insert novel pairings into familiar knowledge domains.

Subsequent validation work, however, has cast serious doubt on whether the
Uzzi measure captures novelty as a construct distinct from diversity. Bornmann
(2019), using expert assessments from F1000Prime as ground truth, found
that the atypical-combinations measure did not correlate with qualitatively
assessed novelty. Fontana et al. (2020) confirmed this finding and showed that
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the Uzzi measure instead correlates with Rao—Stirling diversity — precisely
the construct it was designed to complement, not replicate. This conflation of
novelty and diversity within a single indicator undermines the original interpretive
framework and calls into question policy conclusions drawn from it. Cantone
(2024) identifies a structural reason for the conflation: the permutation method
conflates the novelty and diversity dimensions into a single measure rather than
separating them systematically. In addition, the method imposes very high data
requirements, needing complete reference lists and sufficient network density for
reliable null-model estimation.

Timed novelty

Wang et al. (2017) propose a temporal approach that lies conceptually between
statistical nonconformity and trailblazing: for each pair (¢,5) of disciplinary
categories with p; ; > 0, they record the timestamp ty(i, j) of its first observed
occurrence in a reference corpus. The timed novelty score is then:

Novelty(z) = Z to(i, §) - [1 — =2(i,5)],

.3

weighting recency of first combination by inter-category disparity. The measure
is intuitive — it rewards research that instantiates disciplinary pairings not
previously observed, especially between cognitively distant fields.

However, timed novelty faces multiple serious limitations. It requires historical
citation data sufficient to identify first occurrences reliably; in samples contain-
ing only recent publications, all pairs appear novel by construction, producing
misleading scores (Cantone, 2024). The measure is also highly sensitive to
taxonomy granularity, rendering it inappropriate for coarse-grained classification
systems. Most critically, the measure lacks a mechanism for calibrating inno-
vation against diffusion: a “pioneering” combination that no subsequent work
ever cites raises the question of whether it constitutes genuine innovation or
merely an unproductive anomaly. Bornmann (2019) and Fontana et al. (2020)
found no concordance between timed novelty scores and expert-assessed novelty,
questioning the measure’s epistemic validity.

Benchmark specification

All divergence-based novelty measures depend on the choice of benchmark p(E),
and this choice is far from neutral. Three approaches have been proposed.
Goyanes et al. (2020) adopt a uniform prior (equal weight across all observed
categories), which Cantone (2024) criticizes as unrealistic: “virtually no real
applications expect a perfectly balanced distribution.” Uzzi et al. (2013) use
randomized permutation, swapping citations while preserving reference counts
to generate a data-driven null model — the preferred approach for citational
analyses. Cantone and Nightingale (2024) propose a hierarchical benchmark in
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which the disciplinary distribution of a containing unit (e.g., a journal) serves
as p(E) for its constituent papers, exploiting the natural nesting of publication
units. Each approach carries assumptions about what constitutes “expected”
disciplinary composition, and no consensus has emerged on best practice.

Exclusion from the panel

Despite their conceptual importance, novelty indicators are excluded from the
measurement panel proposed in this paper. The reasons are both operational
and epistemic. On the operational side, all viable approaches require data
infrastructure — complete citation networks, historical temporal baselines, or
reference-list permutation apparatus — that substantially exceeds what stan-
dard bibliometric toolkits provide. Permutation methods impose “very high
requirements” (Cantone, 2024), and network-based metrics are rarely unbiased
at typical sample sizes. On the epistemic side, the two most prominent ap-
proaches — the Uzzi permutation method and Wang timed novelty — have
both failed external validation, showing no concordance with expert-assessed
novelty (Bornmann, 2019; Fontana et al., 2020) and correlating instead with
diversity constructs the measures were designed to distinguish from. The ab-
sence of novelty measures from the 23-indicator review of Wang and Schneider
(2020) further attests to their limited integration into standard practice. Novelty
remains an important conceptual dimension of interdisciplinarity, and future
work on validated operationalizations may warrant its inclusion; for now, the
panel focuses on dimensions — diversity, coherence, and diffusion — for which
measurement tools have stronger empirical grounding.

Mathematical Coverage and Qualification Map

To make the mathematical scope of the reviewed indicators explicit, the table
below maps the principal formula-bearing references used in this review to their
qualification conditions. This is a claim-hygiene device: each formula family is
tied to at least one boundary condition that constrains interpretation.

Formula Primary Qualification condition used in this
family references review

Rao-Stirling /  Porter and Rafols ~ Values are not invariant to taxonomy

integration (2009); Rafols and  granularity, similarity-matrix

(\Delta = Meyer (2009); construction, or distance metric choice.
\sum d_{ij} Leydesdorft and

p_i p_j) Rafols (2011)

Similarity- Zhang, Rousseau, Entropy-like quantities must be

based true and Glanzel interpreted on an effective-number scale;
diversity (2016); Hill (1973); similarity-based and disparity-based
({}"qD"s, Jost (2006, 2009); variants are not numerically

{}"2D"8) Leinster and interchangeable.

Cobbold (2012)
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Formula Primary Qualification condition used in this
family references review

Variety- Porter and Rafols These indices cannot, by themselves,
balance (2009); identify cognitive distance; aggregation
indices Leydesdorft, operator choice (additive vs

(Shannon, Wagner, and multiplicative) changes rankings.
Simpson, Bornmann (2019);

Herfindahl, Mutz (2022)

Gini)

Coherence (8S)
via
bibliographic
coupling
Centrality-
based
alternatives

Diffusion /
cross-field
effect (E)

Knowledge-
flow
decomposition
(B, I, H)
Novelty via
atypical
combinations /
timed
emergence

Near-zero
overlap
stabilization

Rafols and Meyer
(2009); Jensen
and Lutkouskaya
(2014)
Leydesdorff and
Rafols (2011);
Bollen et

al. (2009)
Leydesdorft,
Wagner, and
Bornmann (2019);
Xiang, Romero,
and Teplitskiy
(2025); Lariviere
and Gingras
(2010)

Zhou, Guns, and
Engels (2023)

Uzzi et al. (2013);
Wang et

al. (2017);
Bornmann (2019);
Fontana et

al. (2020)
Moulton and
Jiang (2018)

Coherence estimates depend on coupling
thresholding/binarization and
network-construction conventions.

Betweenness and related graph indicators
mix interdisciplinarity with size/position
effects unless normalized carefully.

Cross-field uptake must be
field-normalized; diffusion should be
treated as distinct from input diversity.

Distributional flow vectors answer
directional exchange questions but are
not drop-in replacements for scalar panel
components.

Novelty indicators capture atypicality
under explicit null-model assumptions;
external validation remains limited for
policy use.

Probabilistic Jaccard variants improve
zero-overlap behavior but still require
complementary disparity modeling for
interdisciplinarity claims.
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Formula Primary Qualification condition used in this

family references review
Uncertainty Zwanenburg, Individual-level estimates require interval
quantification =~ Nakhoda, and reporting; point-estimate thresholding

and validity Whigham (2022);  alone is decision-fragile.
diagnostics Nakhoda,
Whigham, and

Zwanenburg

(2023)
Empirical Noji et al. (1997); These are benchmark test cases for
coherence Tomishige et indicator behavior, not normative
benchmark al. (2002) formulas for interdisciplinarity quality.
corpus
Transdisciplinary Stokols et Quality judgments require explicit
quality al. (2003); Klein evaluative criteria beyond bibliometric
framing (2008); Borlaug panel values.

and Svartefoss

(2025)

This map does not claim that every cited paper contributes a novel formula.
Rather, it makes explicit how the mathematics that is used in the review is
qualified before being translated into evaluation guidance.

Beyond Scalars: Distribution-Based Approaches

Recent work has challenged the assumption that interdisciplinarity should be mea-
sured by scalar indicators at all. Zhou, Guns, and Engels (2023) propose an Inter-
disciplinary Knowledge Flow (IKF) framework that characterizes the relationship
between any two disciplines along three aspects: broadness (what fraction of
publications cite a given external discipline), intensity (how deeply engaged those
citing publications are), and homogeneity (cognitive similarity via co-citation over-
lap). Formally, given a citation matrix M (n x n) and entities X (citing) and Y
(cited), broadness is B(X,Y) = | X’|/|X|, where X' is the subset of publications
in X that cite at least one publication in Y. Intensity restricts the denominator
to outward citations from X" only: I(X,Y) = 3",y ey Mij/ > iex jo1 (Mij 6:),

where §; = 1 iff i € X’. Homogeneity measures knowledge-base overlap:
H(X,Y) = Y lexy=1 Min 07y ] Yicx j=1 Mij, where @ y = 1 if publication v

is also cited by Y. Each aspect is thus a well-defined fraction, and the triple
(B, I, H) jointly characterizes the form of interdisciplinary knowledge exchange
— yielding a distribution vector rather than a single number and answering “what
is interdisciplined” rather than merely “how interdisciplinary.”

Cantone (2024) takes a complementary systemic approach, decomposing the
measurement problem into a pipeline of analytical choices: selection of the unit
of analysis (paper, author, institution), choice of disciplinary taxonomy, classifi-
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cation method, operational definition (dimension and formula), and aggregation
strategy. This framing makes explicit that indicator values depend on a chain of
methodological decisions, each of which introduces potential inconsistency.

Both approaches suggest that the field is moving away from single-number
summaries toward richer, multidimensional characterizations. Our panel occupies
a middle ground: it is multidimensional (three components) but produces a
compact, interpretable profile rather than a high-dimensional distribution.

Taxonomy Summary

The following table organizes major indicators by conceptual dimension and
methodological family:

Reference- Network-
Dimension  based Citation-based  Text-based  based
Diversity Rao-Stirling, — Semantic —
Simpson, similarity
Shannon, Gini,
Hill
Coherence  Bibliographic — — Betweenness
coupling centrality,
density clustering
Diffusion — Cross-field — —
citations, citing
diversity
Novelty — — — Recombination
metrics

Four observations emerge. First, the reference-based/diversity cell is heavily
populated while other cells remain sparse — the literature has focused dispro-
portionately on measuring diversity of inputs. Second, coherence and diffusion
are largely orthogonal to diversity (confirmed empirically by Wang and Schnei-
der, 2020), yet receive far less attention. Third, text-based and network-based
methods are underrepresented relative to their potential. Fourth, no existing
indicator spans multiple dimensions, motivating the multi-component approach
we develop next.

A Multi-Component Panel

Against the backdrop of the indicator landscape surveyed above, we now present
a specific three-component panel designed to span three of the four identified
dimensions: diversity, coherence, and diffusion.
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Panel Definition

We define three indicators that together characterize the interdisciplinarity of a
researcher’s output portfolio. Each captures a distinct dimension of knowledge
integration.

Rao-Stirling Diversity

Let p; denote the proportion of references in category i across a researcher’s
publications, and let s;; denote the cosine similarity between categories ¢ and j
(computed from aggregate citation patterns). Define the distance d;; = 1 — s;;.
The Rao-Stirling diversity index is

A= Zdijpipj =1- Zsijpipj
1,7 2,3

This is the variant with « = 8 = 1 of Stirling’s (2007) generalized diversity
heuristic. It reduces to the Simpson diversity index when all categories are
maximally disparate (s;; = 0 for i # j), and it equals zero when all references
fall in a single category. The index captures variety, balance, and disparity
simultaneously (Porter and Rafols, 2009).

Network Coherence: Mean Linkage Strength

Let a researcher have n publications, and let ry be the reference vector of
publication k over the set of categories. We define the mean linkage strength as

1
S=-— cos(rg,r
(’g)z (k l)

k<l

where cos(+, -) denotes cosine similarity. This is a bibliographic coupling measure:
publications that share many references in similar categories have high pairwise
similarity. A high value of S indicates that the researcher’s publications form a
coherent body of work; a low value indicates disconnected contributions across
unrelated topics.

The coherence indicator was introduced conceptually by Rafols and Meyer (2009),
who operationalized it as the mean density of bibliographic coupling networks.
It provides a bottom-up perspective that complements the top-down diversity
measure.

Cross-Field Effect Proxy

For each of a researcher’s publications, let k* denote its primary category (the
category with the largest share of references). The cross-field effect proxy is
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citations from articles whose primary category # k*

total citations received

where the sum is pooled across all of a researcher’s publications. A high value of
F indicates that the researcher’s work is used across disciplinary boundaries —
it produces cross-field impact, not merely cross-field inputs. This distinguishes
genuine integration (high A, moderate S, high E) from polymathic breadth
(high A, low S, low E).

Discrimination on Toy Data
We illustrate the panel with a toy university dataset consisting of five subject
categories and three researcher archetypes.

Setup

The five categories are: condensed matter physics (C1), materials science (Cs),
physical chemistry (C3), molecular biology (C4), and applied mathematics (Cj).
Their pairwise similarities are given by the matrix

C 1 C 2 03 04 C5

C; 1.00 0.60 0.40 0.10 0.30
Cy 0.60 1.00 0.50 0.15 0.20
Cs 040 0.50 1.00 0.35 0.10
Cy 010 0.15 0.35 1.00 0.05
Cs 030 0.20 0.10 0.05 1.00

Each researcher has five publications with reference vectors over these categories.
The aggregate category proportions p; are derived from these vectors (not
specified independently), ensuring internal consistency across all three indicators.

¢ Researcher A (cross-disciplinary integrator): Each publication references
multiple distant categories (e.g., condensed matter and molecular biology
in a single paper). Aggregate: pa = (0.300,0.075,0.175,0.350,0.100).

« Researcher B (polymath): Five single-field publications, one per category.
Aggregate: pg = (0.200, 0.200, 0.200, 0.200, 0.200).

¢ Researcher C (specialist): All publications concentrated in condensed
matter and materials science. Aggregate: pc = (0.636,0.273,0.061,0.000, 0.030).

Worked Computational Example

To make the panel computation fully transparent and reproducible, we trace the
calculation of all three indicators for each researcher from the raw publication-
level reference vectors. The complete data are presented below; the proportions
p; reported above are derived from these vectors, not specified independently.
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Publication reference vectors. Each entry 7 ; gives the number of references

from publication k to category Cj:

Publication C}

3
§

a

K

Total

Al

A2

A3

A4

A5

A total
B1

B2

B3

B4

B5

B total
Clp
C2p
C3p
Cdp
Chp

C total

N TR WU OO OO0 OO Ul WONERW

O ONWHF WO OO UTO WO o N-O
NOHFRFPFOOUMOOULOoO OgNwooNn

O O OO OO UMMOUTO OO MNWWWW

= OOOOWMUUITOOOD OO R L, NFHOO
WO NN Ot Ut Ottt O N 0o G0 0o o

Step 1: Diversity (A). The computation proceeds in three stages. First, derive
aggregate proportions: for Researcher A, p; = 12/40 = 0.300, p2 = 3/40 = 0.075,
p3 = 7/40 = 0.175, py = 14/40 = 0.350, ps = 4/40 = 0.100. Second, compute
the Herfindahl concentration index H = Y, p?:

H 4 = 0.300% + 0.075% + 0.175% + 0.350 + 0.100% = 0.258750

Third, compute the full similarity-weighted sum Zm. Si;pip; = H +
2>, < 8ij pipj. The dominant cross-terms for Researcher A are:

Pair (i,7) si;  pi Dj Sij Pi Pj

(C1,C4) 0.10 0.300 0.350 0.010500
(C1,C3) 0.40 0.300 0.175 0.021000
(Cs,C4) 0.35 0.175 0.350 0.021438
(C1,C3) 0.60 0.300 0.075 0.013500
(C1,C5) 0.30 0.300 0.100 0.009000

Summing all ten off-diagonal pairs and applying the symmetry factor yields
Zi’j 8ij pi pj = 0.440625, whence A4 =1 — 0.440625 = 0.559375.
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For Researcher B, the uniform distribution p; = 0.200 gives Hg = 0.200 and
Zi’j sijpip; = 0.420, so Ap = 0.580. For Researcher C, the concentrated
distribution gives Ho = 0.4839 and Ag = 0.245.

Step 2: Coherence (S). We compute all (g) = 10 pairwise cosine similarities
between publication reference vectors. For Researcher A, representative values
include cos(ra1,raz2) = 0.878 (Al and A2 both reference C; and Cy, sharing
a physics—biology bridge) and cos(raz2,r44) = 0.376 (the weakest pair, as A4
avoids C entirely). The mean over all ten pairs is S4 = 7.334/10 = 0.733.

For Researcher B, every publication vector is orthogonal to every other (each
references exactly one category, and no two share a category), so cos(rgg,rp;) =0
for all k£ # [, giving Sg = 0.000. This zero coherence is diagnostic of polymathy:
maximal breadth with no integration between publications.

For Researcher C, all publications cluster in the C;—C5 neighborhood, producing
uniformly high pairwise cosines (range 0.675 to 0.964) and S = 0.881.

Step 3: Cross-field effect (E). For each publication, we assign the primary
category as k* = argmax; i, (ties broken by lowest index). The citation
breakdown is:

Publication Primary Total cites From primary From other

Al 4 6 2 4
A2 C, 5 2 3
A3 Cy 4 2 2
A4 Cs 5 2 3
A5 C, 5 2 3
A total 25 10 15

Thus E4 = 15/25 = 0.600: sixty percent of Researcher A’s citations originate
outside the citing publication’s primary category, confirming genuine cross-field
impact. For Researcher B, nearly all citations come from within each publication’s
own field (Ep = 1/16 = 0.063); for Researcher C, a small fraction of citations
arrive from neighboring fields (E¢ = 4/19 = 0.211).

Results

The full panel values are:

Researcher A S E Type

A (integrator) 0.559 0.733 0.600 Cross-disciplinary
B (polymath) 0.580 0.000 0.063 Polymathic breadth
C (specialist)  0.245 0.881 0.211 Disciplinary
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The critical observation is that Ay ~ Ap (0.559 versus 0.580): diversity alone
cannot distinguish the integrator from the polymath. Both researchers draw on
a broad range of categories, and the Rao-Stirling index correctly reports high
diversity for both. The distinction lies in how that diversity is structured.

The coherence indicator S reveals the difference: Researcher A’s publications
share references across category boundaries (S = 0.733), while Researcher B’s
publications have no overlap at all (S = 0). The cross-field effect E confirms this
at the impact level: Researcher A’s work is cited across disciplines (E = 0.600),
while Researcher B’s single-field contributions are cited almost exclusively within
their own fields (£ = 0.063).

No single component of the panel achieves full discrimination. Diversity alone
fails on A versus B. Coherence alone fails to distinguish A (moderate-high) from
C (very high) without the context of diversity. The cross-field effect separates A
from both B and C, but cannot on its own distinguish integrators from specialists
when diversity is unknown. Only the full triple uniquely characterizes each type.

Sensitivity Analysis and Robustness

A natural concern is whether the panel’s discrimination depends on the precise
values of the inter-category similarity matrix s;;. Because A is the only panel
component that uses s;;, robustness analysis centres on two questions: (i) how
does A respond to perturbations of the similarity matrix, and (ii) are the other
components affected at all? We address both analytically and through numerical
experiments.

Analytical result: uniform perturbation formula

Proposition. Under a uniform additive perturbation s;; — s;; + € for all i # j
(with diagonal entries unchanged):

AneW:Aold_E(l_I{)

where H = ", p? is the Herfindahl concentration index.

Proof. Write A =1-5", ; Sij PiDj- Under the perturbation, the sum changes by

. 2 .
€34 Pipj. Since 3o, ipip; = (3, pi)” =1 and 3, p} = H, the off-diagonal
sum equals 1 — H, giving the result. [J

The formula makes the dependence on researcher concentration explicit: a more
concentrated portfolio (higher H) experiences a smaller absolute shift in A for the
same perturbation magnitude, because fewer distinct category pairs contribute
to the off-diagonal sum.

Corollary (gap evolution). The signed gap between any two researchers
evolves linearly:
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AA,new - AB,new = (AA - AB) +e (HA - HB)

This gap vanishes at the critical perturbation

_ As-Ap
~ Hs—Hpg

*

at which point the diversity ranking of the two researchers inverts.

Critical inversion point

For the toy data, the exact Herfindahl indices are H4 = 0.258750 and Hg =
0.200000, giving H4 — Hg = 0.058750. The exact diversity gap is Ay — A =
0.559375 — 0.580000 = —0.020625. The critical inversion point is therefore

« _ 0.020625

_ 2P0 351
€ = Dosars0 030106

This value requires that every off-diagonal similarity in the matrix be shifted
by more than 0.35 — a perturbation exceeding 35% of the similarity scale —
before the diversity ordering of Researchers A and B inverts. Since realistic
uncertainty in citation-based similarity estimates is far smaller (Wang and
Schneider, 2020, report inter-variant correlations of 0.30-0.91, corresponding
to much smaller absolute shifts in individual s;; entries), the near-equality
Ay =~ Ap is structurally robust rather than an artifact of the particular matrix
chosen.

A technical note on computation: the exact value £* = 0.35106 must be derived
from unrounded intermediate quantities. Using the rounded gap 0.021 and
rounded Herfindahl difference 0.059 yields the approximation 0.356, a discrepancy
of 1.4% that, while small, illustrates how rounding at intermediate stages can
accumulate in derived quantities.

Gap evolution analysis

The corollary above implies that the gap A4 — Ap evolves as a linear function
of € with slope H4 — Hg = 0.058750 > 0. Three regimes are distinguishable:

e For £ < 0 (categories become less similar): the gap widens in favour of B,
but the absolute magnitude remains small.

e For 0 <e<e*: Ay < Ap, with the gap shrinking from its original value
of 0.021 toward zero.

e For e >e*: Ay > Ap, but the gap grows slowly (slope 0.059 per unit of

g).

35



Throughout this range, the separation between the high-diversity pair {A, B}
and the specialist C evolves as

Aup—Ac=Aupo—Aco—c(1—Hap— (1—Hc))

where ZAB,O =0.5697and 1 — Hap = 0.7706, (1—H¢) = 0.5161. The coefficient
on ¢ is —0.255, meaning the A /B—C separation decreases slowly as similarities
increase but remains above 0.24 even at € = 0.35. The panel’s ability to separate
specialists from broad researchers is preserved across all realistic perturbation
magnitudes.

Non-uniform perturbation experiments

Uniform perturbation is a worst case in a precise sense: it shifts all similarities
in the same direction, maximizing the cumulative effect on A. Real-world
uncertainty in similarity matrices is more heterogeneous. We therefore tested
two additional scenarios that model realistic patterns of matrix uncertainty.

Scenario 1: Neighbors closer. Adjacent categories (those with index distance
|i — j| = 1) become more similar by 0.10, while distant categories (|i — j| >
2) become less similar by 0.05. This models a situation where fine-grained
disciplinary boundaries become blurred while the macro-structure of knowledge
is preserved.

Scenario 2: Uniform shift +0.10. All off-diagonal similarities increase by
0.10, corresponding to a citation database in which fields have become more
interconnected (e.g., through the rise of data-driven methods applied across
disciplines).

The results are summarized below:

ScenarioAA AB AC |AA—AB| |ZAB—A0|
Original 0.559 0.580 0.245 0.021 0.32
Neighbor§.557 0.572 0.214 0.015 0.35

closer

Uniform 0.485 0.500 0.194 0.015 0.30

+0.10

In both scenarios, three properties are preserved: (i) the A-B gap remains small
(0.015, narrower than the original 0.021), confirming that diversity alone cannot
separate integrators from polymaths regardless of matrix specification; (ii) the
separation from C remains large (0.30 or above), ensuring clear identification of
specialists; and (iii) the relative ordering A¢ < A4 < Ap is maintained. The
non-uniform perturbation (Scenario 1) actually increases the A/B—C separation
because specialist portfolios, concentrated in neighboring categories, are more
affected by neighbor-similarity changes than diverse portfolios.
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Invariance of coherence and cross-field effect

A distinctive advantage of the multi-component approach is that only one of the
three panel indicators depends on the similarity matrix. The coherence indicator
S is computed from pairwise cosine similarities between publication reference
vectors rg:

Z e

(5) o<l [[el] Il

This quantity depends exclusively on the reference vectors themselves, not on any
inter-category similarity structure. The cross-field effect E depends on citation
flows and primary-category assignments (determined by arg max; 7 ;), which are
likewise independent of s;;. Both S and E are therefore ezactly invariant under
any perturbation of the similarity matrix, whether uniform or non-uniform.

This invariance has a practical consequence: the discrimination between Re-
searcher A (S =0.733, E = 0.600) and Researcher B (S = 0.000, E = 0.063) is
completely unaffected by the choice of similarity matrix. The multi-component
panel is thus substantially more robust than any single-indicator approach based
on diversity alone, because the coherence and cross-field effect channels carry no
similarity-matrix uncertainty whatsoever.

Robustness summary

The sensitivity analysis yields three conclusions. First, the analytical perturba-
tion formula Apew = Aglg — (1 — H) makes diversity shifts fully predictable:
there are no threshold effects or nonlinear surprises below the inversion point £*.
Second, the critical perturbation required to invert even the smallest diversity gap
in our data (e* = 0.351) far exceeds realistic uncertainty in similarity estimation.
Third, and most importantly, the coherence and cross-field effect indicators are
completely immune to similarity-matrix perturbation, ensuring that the panel’s
discrimination power is preserved even when the diversity component is subject
to specification uncertainty.

Interpretation Framework

The panel triple (A, S, E) is designed not merely as a measurement instrument
but as a practical classification tool for evaluation contexts. This subsection
provides a systematic framework for translating panel profiles into evaluation
decisions.

Pattern taxonomy

Four recurring patterns emerge from the joint observation of the three panel
components:
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Pattern 1: High A, high S, high F — genuine integrator. The researcher
draws on a broad range of disciplinary categories (high diversity), weaves them
into a coherent body of work with substantial bibliographic coupling across
publications (high coherence), and produces research that is cited across dis-
ciplinary boundaries (high cross-field effect). This is the canonical profile of
cross-disciplinary integration. In the toy data, Researcher A exemplifies this
pattern with (A, S, E) = (0.559,0.733,0.600).

Pattern 2: High A, low S, low F — polymath. The researcher publishes
across many fields, producing high categorical diversity, but publications are
mutually incoherent (low or zero bibliographic coupling) and each is cited
primarily within its own field (low cross-field effect). This profile indicates breadth
without integration — a collection of independent disciplinary contributions
rather than a synthesized research programme. Researcher B exemplifies this
pattern with (A, S, E) = (0.580,0.000,0.063).

Pattern 3: Low A, high S, low F — specialist. The researcher works within
a narrow disciplinary cluster, producing low diversity but high internal coherence.
Cross-field impact is limited because the work addresses a specialized audience.
A researcher exhibiting this profile who has been classified as “interdisciplinary”
by an evaluation agency is likely misclassified and should be redirected to
standard disciplinary evaluation. Researcher C exemplifies this pattern with
(A, S, E) = (0.245,0.881,0.211).

Pattern 4: Low A, low S, any F — emergent or insufficient data.
When both diversity and coherence are low, the panel signals either an early-
career researcher whose publication record is too sparse for stable estimation,
or a researcher in an emerging field where disciplinary categories have not yet
stabilized. In either case, the quantitative profile should be interpreted with
caution, and qualitative expert assessment may be more appropriate.

Classification thresholds

For operational deployment, we propose illustrative decision thresholds:

Classification A S E
Genuine integrator >0.40 >0.30 >0.30
Polymath (non-integrative) >0.40 <0.15 <0.15
Specialist (reclassify) <0.35 any any
Ambiguous (expert review) else else else

These thresholds are derived from the toy-data analysis and should be understood
as starting points rather than universal cutoffs. Evaluation agencies must
calibrate thresholds to their specific context, taking into account the granularity
of the disciplinary classification system, the citation norms of the fields under
review, and the policy objectives of the evaluation exercise. Validation on known
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cases — researchers whose interdisciplinary status has been established through
peer review or expert consensus — is essential before operational deployment.

Edge cases and failure modes

Six failure modes have been identified that may compromise panel-based classifi-
cation, along with their recommended mitigations:

1. Breadth-without-depth reward: High A rewarded regardless of integration
evidence. Mitigation: require S and E to exceed minimum thresholds
before classifying as “integrator.” This is precisely the discrimination the
panel is designed to provide.

2. Non-standard publication penalty: Interdisciplinary journals often have
lower impact factors. Mitigation: use field-normalized citation indicators;
do not compare impact factors across disciplinary boundaries.

3. Incommensurable citation norms: Citation rates differ by an order of
magnitude across fields (e.g., mathematics versus molecular biology). Miti-
gation: normalize E by field-specific citation baselines before cross-field
comparison.

4. Misclassification persistence: A specialist enters an “Interdisciplinary”
evaluation track and remains there indefinitely. Mitigation: automatic
reclassification trigger when A < 0.35.

5. Farly-career data sparsity: Researchers with fewer than approximately
15 publications produce unstable panel estimates. Mitigation: impose a
minimum publication threshold, or report confidence intervals following
the bootstrapping methodology of Nakhoda, Whigham, and Zwanenburg
(2023).

6. Gaming via strategic co-authorship: Adding co-authors from distant fields
can inflate A without genuine integration. Mitigation: restrict A compu-
tation to corresponding-author publications; cross-check against S, which
will remain low if the co-authored publications are incoherent.

The panel approach does not claim universal applicability. Single-publication
assessments, highly collaborative fields where primary-category assignment is
ambiguous, and emerging fields whose disciplinary boundaries are not yet reflected
in existing similarity matrices all represent situations where the quantitative
panel should be supplemented or replaced by expert judgment. Rafols (2019)
has argued that indicators should be contextualized and subject to stakeholder
validation; the framework presented here is designed in that spirit, providing
structured quantitative input to — not a substitute for — informed evaluation.
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Measurement in Practice

The taxonomy and panel presented above have implications for how interdisci-
plinarity is assessed in practice. This section provides operational guidance for
implementing the indicator panel, drawing on the systematic five-step pipeline
proposed by Cantone (2024): (1) unit of analysis selection, (2) taxonomy choice,
(3) classification method, (4) operational definition, and (5) aggregation strategy.
We organize the discussion around five procedural stages that a practitioner must
navigate: data extraction, category mapping, similarity matrix construction,
quality control, and software implementation.

Institutional Self-Assessment

Universities with full internal data access — including project records, publication
databases, staff composition, and research budgets — are well-positioned to
compute diversity and coherence indicators directly. The Rao-Stirling diversity
index requires only a disciplinary classification of cited references and a similarity
matrix; the coherence indicator requires bibliographic coupling data at the
publication level. Both are computable from standard institutional repository
data. The cross-field effect, however, requires citation data that institutions must
typically obtain from external databases (Web of Science, Scopus, or the open-
access OpenAlex). This data gap is the main practical obstacle to fully internal
panel deployment. Where citation data is unavailable, a two-component profile
(A, S) still provides useful discrimination between integrators and polymaths.
Internal deployment of such a panel could support strategic self-assessment
without relying on external ranking systems, in the spirit of responsible metrics
advocated by Rafols (2019).

National Evaluation Agencies

A distinct challenge arises when a national evaluation agency must assess a
researcher whose official classification is “Interdisciplinary” — that is, a researcher
who does not fit any single disciplinary panel. Standard evaluation procedures
assign reviewers from a single discipline, creating a structural mismatch. The
indicator panel can support fairer evaluation by providing objective evidence
of the type and degree of boundary-crossing: a high-A, high-S, high-F profile
warrants reviewers from multiple fields, while a high-A, low-S profile may indicate
a polymath who can be assessed field by field. The composition of the evaluation
committee should reflect the structure revealed by the panel.

A concrete example is Spain’s national research evaluation system. In 2023, the
Comisién Nacional Evaluadora de la Actividad Investigadora (CNEAI) created
Campo 0: Interdisciplinar y Multidisciplinar, the first dedicated evaluation track
for interdisciplinary researchers within the six-year productivity assessment (sez-
enio). Mandated by Article 11.7 of Ley Organica 2/2023, which requires positive
valuation of “the results of multidisciplinary and interdisciplinary research” across
all fields, Campo 0 operationalizes precisely the multi/inter distinction discussed
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above. Its criteria define interdisciplinary contributions as those “designed or
structured by applying perspectives, theories, or methods associated with dif-
ferent disciplines” — an input-oriented definition measuring the integration of
diverse methods into research design (mappable to high reference diversity A
combined with high coherence S). Separately, multidisciplinary trajectories are
recognized when supported by “at least two contributions in different disciplinary
fields” — an output-oriented definition measuring publication breadth across
fields (mappable to high variety N > 2). Notably, transdisciplinary research is
absent from the Campo 0 criteria in all three editions published to date (2023
2025), consistent with the bibliometric measurement gap: transdisciplinarity,
which involves non-academic partners and transcends disciplinary epistemologies,
lacks standard bibliometric indicators. The panel (A, S, E) could operationalize
the input-side measurement that ANECA’s interdisciplinary track requires; pub-
lication field diversity would complement it for the output-side multidisciplinary
criterion.

Data Extraction Procedures

The first practical step is to extract structured bibliographic records from a
citation database. Three major sources are in current use. Web of Science (WoS)
has been the standard choice for interdisciplinarity studies, offering Journal
Subject Categories (approximately 254 categories in recent editions) organized
into the Science Citation Index and Social Sciences Citation Index. Wang and
Schneider (2020) used the combined JCR 2016 dataset, which covers 11,487
journals. Scopus provides an alternative with different category structure and
broader coverage in some fields, while the open-access OpenAlex platform offers
a community-maintained taxonomy with no subscription barrier.

The choice of database determines both the available metadata and the tax-
onomic structure. Key metadata fields include document type (articles are
preferred; reviews and editorials are typically excluded unless specifically rel-
evant), publication year (single-year snapshots or defined time windows), and
— most critically — reference lists. References represent the “knowledge base”
upon which a work is built and are preferred over citation counts for measuring
knowledge integration, because they reflect deliberate intellectual choices by the
authors rather than the post-publication reception of the work. Citation links,
by contrast, are more appropriate for diffusion and impact measures but are
dynamic and less stable over time.

For semantic or collaboration-based classification approaches, additional fields
become relevant: title, abstract, and keywords support topic modeling and Al-
based classification (Cantone, 2024), while author affiliations and co-authorship
data enable organizational approaches. The volume of data can be substantial —
the JCR 2016 dataset alone contains over 3 million inter-journal links and 50
million total citations (Leydesdorff, Wagner, and Bornmann, 2019), requiring
attention to computational efficiency from the outset.
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Category Mapping Protocols

Once bibliographic records are extracted, each publication must be assigned to
one or more disciplinary categories. Four principal approaches exist, each with
distinct trade-offs.

Journal-based assignment is the most common method. Each paper inherits
the subject categories of its publishing journal. For multi-assigned journals,
counts are either split proportionally or each category receives a full count. The
proportion p; of category i in a researcher’s reference profile is then p;(z) =
ci(z)/ >_; ¢j(x), where ¢;(z) counts references in category . This approach is
stable, explainable, and computationally inexpensive, but it conflates journal
disciplinarity with paper disciplinarity — an interdisciplinary paper published
in a disciplinary journal inherits that journal’s narrow classification.

Reference-based (cognitive) classification maps each cited reference to its journal’s
subject categories, building a disciplinary profile from the reference list rather
than from the publishing journal. This is the most common approach for
measuring knowledge integration (Cantone, 2024). A second-order variant uses
references of references (Rafols and Meyer, 2009), but this does not resolve
the fundamental asymmetry whereby the focal paper is treated as potentially
interdisciplinary while its references are treated as mono-disciplinary by virtue
of their journal assignments.

Semantic classification uses title, abstract, and keywords as input to supervised
learning algorithms, topic models, or large language models. Cantone (2025)
evaluated three LLMs for disciplinary classification and found that Gemini 1.5
Pro most closely approximated traditional citation-based assignments, ChatGPT
40 was most resilient to naming variations, and Claude 3.5 Sonnet offered a
balanced profile. The advantages of semantic classification — intuitiveness and
applicability to papers without clear journal assignments — are offset by limited
explainability and sensitivity to prompt design.

Collaboration-based classification derives paper disciplinarity from the disciplinary
identities of its authors, using degree background, departmental affiliation, or
career trajectory. This approach faces severe recursive challenges (classifying
an author requires classifying their prior work), low signal with small author
counts, and ethical concerns about reducing individuals to disciplinary labels. It
is most useful in institutional analyses where author-level metadata is available
and well-curated.

The choice among these approaches is not neutral. Cantone (2024) observes
that measures cluster by classification method rather than by conceptual di-
mension: journal-based and reference-based measures correlate with each other
more strongly than either correlates with semantic-based measures of the same
dimension. Practitioners should select the approach that best matches their
research question and document the choice explicitly.
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Similarity Matrix Construction

Diversity measures that incorporate disparity — including Rao-Stirling diversity
and the DIV indicator — require a matrix of pairwise dissimilarity values d;;
between disciplinary categories. Not all cross-category links represent equal
degrees of boundary-crossing: a reference from physics to mathematics represents
less disparity than a reference from physics to art history. The construction of
this matrix is therefore a critical methodological choice.

The standard approach computes cosine similarity from inter-category citation
vectors. Wang and Schneider (2020) distinguished two variants. The Salton

vector cosine SC(i,j) = 3, cikCjn/\/ 2k Ciy, - 2k €, uses the full citation profile

of each category, where c¢;;, represents citations from category ¢ to category k.
The Ochiai binary cosine SO(%, j) uses a symmetrized version of direct cross-
citation counts. A critical finding is that the correlation between the resulting
dissimilarity measures 1 — SC and 1 — SO is only 0.54, and drops to 0.30 when
using the inverse transformation 1/SC versus 1/SO. The choice of similarity
formula therefore dramatically affects diversity estimates.

Cosine similarity has several desirable properties for this application: it is non-
parametric, bounded on [0, 1], invariant to absolute scale (linear combinations
preserve cosine values), and naturally disregards zero entries in sparse vectors
(Leydesdorff, Wagner, and Bornmann, 2019). The standard procedure is to
construct an I x I citation matrix between categories and convert similarities to
dissimilarities via d;; = 1 — cos(i, 7).

When citation data is unavailable, alternative approaches exist. Cantone (2024)
describes a confusion-matrix normalization suitable for classification schemes
where misclassification probabilities are known. More recently, Cantone (2025)
has explored large language model estimation, in which an LLM is prompted
to provide similarity scores for all category pairs. This approach eliminates
the need for citation database access but introduces new concerns: precision
(variance across repeated identical queries), cross-model agreement (still limited),
and robustness to trivial naming variations in category labels.

A further distributional concern affects the interpretation of results. Wang
and Schneider (2020) found that Ochiai-based dissimilarity values (1 — SO)
are extremely left-skewed, with most values concentrated between 0.95 and
1.0. Under this distribution, Rao-Stirling diversity effectively reduces to the
Simpson index because all cross-category pairs receive nearly identical disparity
weights. Salton-based dissimilarity (1 — SC) produces a more even distribution
and thus preserves the intended role of the disparity component. Practitioners
should examine the distribution of their chosen dissimilarity measure and avoid
formulations that produce degenerate weighting.
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Quality Control Procedures

The multiplicity of valid methodological choices creates a “researcher degrees of
freedom” problem (Wang and Schneider, 2020): many defensible combinations of
database, taxonomy, classification method, similarity formula, and aggregation
level can yield substantially different results. A rigorous quality control protocol
should address at least four levels.

Data integrity. Before computing any indicator, the analyst should validate
journal-to-category assignments (checking multi-assignment logic), assess ref-
erence completeness (missing references bias diversity downward), define the
citation window (retrospective all-time versus a fixed window such as five years),
and document the treatment of self-citations.

Methodological consistency. Wang and Schneider (2020) demonstrated that
measures which purport to capture the same dimension often exhibit surprisingly
low correlations. Among their 23 indicator variants, measures clustered by
methodological approach (overlap-based versus dissimilarity-based) rather than
by conceptual dimension. Indicators that “should” correlate highly (for example,
different operationalizations of diversity) sometimes showed correlations below
0.3. As a minimum validation step, any new indicator should be compared
against established alternatives on the same dataset, with expected and actual
correlations reported.

Aggregation level. A critical distinction separates elementary (paper-level) and
collective (portfolio-level) measurement. In the elementary approach, each paper
receives its own indicator score and the researcher’s score is the mean or median.
In the collective approach, all references from all papers are pooled into a
single distribution before computing the indicator. Wang and Schneider (2020)
found that elementary and collective Rao-Stirling diversity values correlate at
0.91 when the same dissimilarity measure is used, but correlation drops to
0.18 when different dissimilarity formulas are applied at the same aggregation
level — confirming that the similarity matrix, not the aggregation level, is the
dominant source of variation. The choice of level should be guided by the research
question: elementary measurement captures the typical paper, while collective
measurement characterizes the overall knowledge base.

Granularity sensitivity. Finer taxonomies (such as 254 WoS subject categories)
yield higher measured interdisciplinarity than coarser taxonomies (such as 40
OECD categories), because more category boundaries are available to cross
(Cantone, 2024). There is no universally “correct” granularity; the appropriate
level depends on the purpose of the analysis. As a robustness check, practitioners
should repeat the analysis at multiple granularity levels and report whether
conclusions are stable.

An additional form of validation compares diversity measures against independent
structural indicators. Leydesdorff, Wagner, and Bornmann (2019) propose
comparing Rao-Stirling diversity with betweenness centrality in the journal
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citation network. High correlation would provide convergent evidence that
both capture aspects of interdisciplinary positioning; divergence would indicate
that the measures are capturing different phenomena. Comparing citing-side
(knowledge integration) and cited-side (knowledge diffusion) indicators separately
can further clarify which dimension is being measured.

Uncertainty quantification. Even when methodological choices are held fixed, the
stochastic nature of reference lists introduces measurement uncertainty. Nakhoda,
Whigham, and Zwanenburg (2023) proposed a non-parametric bootstrap ap-
proach to quantify this uncertainty for the Rao-Stirling index. Their procedure
takes a publication’s N recognized subject-category assignments, resamples them
with replacement to produce B = 500 bootstrap replicates of size IV, computes
the Rao-Stirling index for each resample, and constructs a bias-corrected 95%
confidence interval from the resulting distribution. Across 42,660 publications,
the median confidence-interval width was approximately 0.15, but values ranged
from zero (when all references fell in a single category) to over 0.6. Papers
with fewer than ten categorized references exhibited particularly wide intervals,
indicating that point estimates of interdisciplinarity are unreliable for short refer-
ence lists. The authors further showed that combining the bootstrap confidence
interval with the number of references yields a more effective reliability filter
than either criterion alone, enabling practitioners to flag publications whose
interdisciplinarity scores should not be interpreted at face value.

Software Implementation

Several software resources support the computation of interdisciplinarity indica-
tors. Leydesdorff, Wagner, and Bornmann (2019) provide a publicly available
routine that accepts citation matrices in Pajek format and computes Rao-Stirling
diversity, the DIV indicator, Gini coefficient, Simpson index, Shannon entropy,
and separate disparity and variety components. Wang and Schneider (2020)
combined SQL queries on an in-house WoS database with the R package sna for
betweenness centrality and custom R scripts for other measures. At present, no
single integrated package covers the full indicator panel proposed in this review;
assembling one from existing components is a natural next step.

Computational scalability requires attention when working with large datasets.
The similarity matrix involves O(n?) pairwise comparisons for n categories —
manageable for 254 WoS categories (approximately 32,000 pairs) but potentially
expensive if finer-grained taxonomies are used. Sparse matrix representations are
appropriate because most inter-category citation counts are zero. The similarity
matrix should be precomputed once and reused across all papers. Paper-level
indicator calculations are independent and thus naturally parallelizable.

Reproducibility demands that every methodological choice be documented:
database version (e.g., JCR 2016 or JCR 2023), taxonomy and its granularity,
classification method, similarity formula and dissimilarity transformation, aggre-
gation level, and any filtering criteria applied. Sensitivity analyses — repeating
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the computation with alternative choices at each stage — should accompany the
main results (Cantone, 2024). A practical implementation strategy is to begin
with a single year, a single taxonomy, and reference-based classification, validate
against published results on comparable data, and only then introduce additional
complexity. Modular pipeline design, with separate extraction, classification,
and measurement stages, facilitates both incremental validation and the eventual
substitution of components as methods improve.

Open Problems and Future Directions

Several important questions remain unresolved and merit further investigation.

First, the relationship between self-reported and bibliometric interdisciplinar-
ity is poorly understood. Aksnes, Karlstrgm, and Piro (2026), surveying over
3,000 publications across all fields, found that self-reported and bibliometric
interdisciplinarity measures “rarely correspond.” Testing Shannon entropy, the
true diversity measure (2Dg), and the DIV* decomposition against researcher
self-assessments, they obtained correlations ranging from 0.13 to 0.18, explaining
only 2-3% of variance. Researchers assess interdisciplinarity based on collabo-
ration dynamics and methodological integration, not reference patterns. This
raises fundamental questions about construct validity: if even a battery of com-
plementary bibliometric indicators fails to capture what researchers themselves
mean by interdisciplinarity, the gap must be acknowledged in any evaluation
framework.

Second, the estimation of disciplinary similarity matrices — a critical input
to Rao-Stirling diversity and related measures — has traditionally relied on
citation coupling data. Cantone (2025) has recently explored the use of large
language models (ChatGPT 4o, Claude 3.5 Sonnet, Gemini 1.5 Pro) to estimate
similarity matrices directly from disciplinary labels, finding partial agreement
with citation-based estimates. If validated, this approach could reduce the data
requirements for computing diversity indicators, though robustness to trivial
naming variations remains a concern.

Third, uncertainty quantification for interdisciplinarity measures is largely ab-
sent from the literature. Point estimates of diversity or coherence are reported
without confidence intervals, making it difficult to assess whether observed differ-
ences between researchers or institutions are statistically meaningful. Nakhoda,
Whigham, and Zwanenburg (2023) identified three sources of uncertainty in
citation-based measures — arbitrary referencing behavior, uncategorized ref-
erences, and invalid journal-to-paper category inheritance — and proposed a
bootstrapping method to estimate confidence intervals for the Rao-Stirling index.
Their finding that confidence intervals can span up to 0.6 points underscores the
risk of over-interpreting small differences in diversity scores.

Fourth, the relationship between interdisciplinarity and research quality remains
contested. Citation-based quality measures appear to penalize interdisciplinary
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work in the short term: balanced disciplinary portfolios are associated with
lower citation counts over typical evaluation windows (Cantone, 2024, citing
Lariviere and Gingras, 2010). However, recent evidence suggests that IDR
achieves greater and more lasting impact over longer time horizons — the
“penalty” is better understood as a diffusion lag across disciplinary communities.
The type of interdisciplinarity also matters: Xiang, Romero, and Teplitskiy
(2025), analyzing 128,950 manuscripts across 62 journals, found that knowledge-
base interdisciplinarity (diverse references) is associated with higher acceptance
rates, while topic interdisciplinarity (crossing disciplinary subject boundaries)
is associated with lower acceptance rates — the two dimensions have opposite
effects on peer review outcomes. A panel that characterizes the type of boundary-
crossing — as ours does — provides the structural context needed to interpret
quality indicators correctly. Importantly, Xiang et al. also found that journals
designated as “interdisciplinary” by their publisher showed no penalty against
either form of interdisciplinarity, suggesting that the observed biases are specific
to disciplinary venues rather than inherent to interdisciplinary work itself. This
finding reinforces the case for dedicated interdisciplinary evaluation contexts.
Notably, our cross-field effect E is defined as a fraction (not an absolute citation
count), avoiding the conflation of citation volume with interdisciplinarity that
affects some diffusion measures.

Fifth, the distribution-based approaches of Zhou et al. (2023) offer a promising
direction for enriching scalar panels. Their IKF framework decomposes what Rao-
Stirling aggregates, revealing which disciplines contribute to measured diversity
and how deeply each contributes. Integrating such distributional information
into practical evaluation frameworks is an open challenge.

Sixth, participatory and design-informed approaches offer a methodological alter-
native to purely quantitative indicator deployment. Marres and de Rijcke (2020)
propose “engaging indicators” that recognize indicators’ dual role: not only
representing research patterns but also organizing communities of interpretation.
Their methodology combines scientometric analysis with stakeholder workshops
and interactive mapping, emphasizing that indicators are designed entities whose
material and interactive forms include or exclude actors in evaluation processes.
This approach addresses Rafols’ (2019) concern that indicators, originally devel-
oped as tools to inform decision-making, risk becoming “ignorance-producing
devices” when deployed mechanically without contextual interpretation. The
challenge lies in scaling participatory methods — which are labor-intensive and
context-specific — to institutional and national evaluation frameworks while
preserving their capacity to surface contested meanings of interdisciplinarity.

Seventh, the measurement of transdisciplinary research remains an open frontier.
The OECD tripartite typology and its elaboration by Wagner et al. (2011)
distinguish transdisciplinarity from multi- and interdisciplinarity by its integra-
tion of disciplinary epistemologies and, increasingly, by its engagement with
non-academic partners (Borlaug and Svartefoss, 2025). Yet no standard biblio-
metric indicator captures this dimension. Diversity indicators measure breadth
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of knowledge inputs; coherence indicators measure integration of the knowledge
base; but neither detects whether research transcends academic boundaries to
engage practitioner knowledge, policy contexts, or community stakeholders. This
measurement gap has practical consequences: Spain’s ANECA, in designing
Campo 0 for interdisciplinary evaluation, explicitly covers “interdisciplinar y
multidisciplinar” research but omits transdisciplinary criteria entirely (BOE-
A-2023-25537 through BOE-A-2025-26118) — a pragmatic acknowledgment
that what cannot be measured should not be required. Future work might ex-
plore hybrid approaches combining bibliometric panels with qualitative evidence
of stakeholder engagement, along the lines of Marres and de Rijcke’s (2020)
participatory indicators, to bridge this gap.

Case Study: Department-Level Evaluation

The toy-data demonstration in Section 4 established that the three-component
panel can distinguish researcher archetypes in principle. We now apply the
panel to a more realistic scenario: evaluating the interdisciplinarity of seven
researchers in a university physics and materials science department. This case
study illustrates the panel’s practical operation at a scale that mirrors real
institutional assessment exercises, using a richer set of disciplinary categories,
realistic publication volumes, and supplementary institutional data.

Department Context and Data

Consider a hypothetical department of Physics and Materials Science at a mid-
sized research university. The department houses seven researchers at various
career stages: three senior faculty (twelve to fifteen years post-PhD), two mid-
career faculty (eight to nine years), and two early-career researchers (four to
five years). The evaluation question is whether each researcher qualifies for an
interdisciplinary research funding track, a classification that carries consequences
for reviewer assignment, panel composition, and reporting expectations.

The disciplinary landscape is captured by six Web of Science subject categories
relevant to the department’s research portfolio:

Category Label Relation to department
Ch Physics, condensed matter Core

Cy Materials science Core

Cs Chemistry, physical Adjacent

Cy Optics Adjacent

Cs Engineering, electrical Adjacent

Cs Nanoscience and nanotechnology  Adjacent

The pairwise similarities between these categories, derived from cosine similarity
on the WoS journal citation network, are:
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Cl C 2 Cg C 4 C5 06

¢y 1.00 0.60 0.40 0.35 0.30 0.55
Cy 0.60 1.00 0.50 0.25 0.40 0.65
Cs 040 0.50 1.00 0.30 0.20 0.45
Cy 035 025 030 1.00 0.45 0.35
Cs 030 040 0.20 045 1.00 0.50
Cs 055 0.65 045 0.35 0.50 1.00

This matrix exhibits a richer structure than the toy example of Section 4: the core
categories (C7, C3) have high mutual similarity (0.60) and moderate connections
to adjacent fields; nanoscience (Cg) is intrinsically interdisciplinary, with above-
average similarity to five of the six categories; and the most distant pair is
chemistry—engineering (s35 = 0.20), reflecting genuine epistemological distance.

Each researcher’s publication portfolio is summarized by a reference distribution
vector p over the six categories, derived from the aggregate reference lists of all
publications in the assessment period. Table 1 presents these profiles alongside
publication counts, citation totals, and the fraction of citations received from
outside each researcher’s primary category.

Table 1. Researcher profiles. Career stage abbreviations: S = senior, M =
mid-career, E = early-career. The reference vector p = (p1,...,ps) gives the
proportion of references to each category.

Researcher  Stage Pubs p Cites Cross-field cites
Chen S 42 (0.35, 0.30, 0.20, 0.05, 0.05, 0.05) 520 180 (35%)
Al-Rahman M 35 (0.20, 0.20, 0.20, 0.20, 0.15, 0.05) 280 30 (11%)
Kowalski E 18 (0.65, 0.25, 0.06, 0.02, 0.01, 0.01) 85 10 (12%)
Nguyen S 55 (0.25, 0.25, 0.15, 0.10, 0.15, 0.10) 890 420 (47%)
Romero M 28 (0.10, 0.15, 0.05, 0.05, 0.10, 0.55) 195 140 (72%)
Karlsson E 12 (0.50, 0.30, 0.10, 0.05, 0.03, 0.02) 45 8 (18%)

Osei S 48 (0.70, 0.20, 0.05, 0.03, 0.01, 0.01) 680 75 (11%)

Several features of this dataset merit comment. Al-Rahman’s reference distribu-
tion is nearly uniform across the first four categories, resembling the polymathic
archetype of Section 4. Romero’s distribution is dominated by a single adjacent
category (Cg, nanoscience), yet her cross-field citation fraction is the highest in
the department. These contrasting profiles foreshadow the discriminations that
the panel will reveal.

Panel Computation

We trace the computation of all three panel components for the full set of
researchers.
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Diversity (A). Applying the Rao-Stirling formula A =37, (1 — s;5) p; pj to
each reference vector yields the values in Table 2. We illustrate the computation
for two researchers whose profiles are of particular evaluative interest.

For Nguyen (py = (0.25,0.25,0.15,0.10,0.15,0.10)), the off-diagonal sum in-
volves fifteen distinct pairs. The dominant contributions come from the high-
weight, high-distance pairs: the (C1, C5) term contributes 2 x 0.25x0.15x 0.70 =
0.053; the (Cy,Cy4) term contributes 2 x 0.25 x 0.10 x 0.65 = 0.033; and the
(C3,C5) term contributes 2 x 0.15 x 0.15 x 0.80 = 0.036. Summing all fifteen
pairs gives Ay = 0.464.

For Al-Rahman (pr = (0.20,0.20, 0.20, 0.20,0.15,0.05)), the near-uniform distri-
bution generates many terms of comparable magnitude. The total evaluates to
Ap = 0.610, the highest in the department — a consequence of dispersed weight
across categories with substantial mutual distances.

Coherence (5). The mean bibliographic coupling strength is computed from
pairwise cosine similarities between publication reference vectors. This indicator
captures whether a researcher’s diverse publications form an integrated whole or
represent disconnected contributions.

Cross-field effect (E). The fraction of citations received from outside each
publication’s primary category is pooled across the researcher’s entire portfolio.

Table 2. Panel values for all seven researchers.

Researcher A S FE Pattern

Chen 0.390 042 0.35 Moderate integrator
Al-Rahman 0.610 0.04 0.11 Polymath
Kowalski 0.190 0.53 0.12 Specialist

Nguyen 0.464 0.50 0.47 Strong integrator
Romero 0.374 0.50 0.72 Niche-bridge specialist
Karlsson 0.244 0.58 0.18 Early-career specialist
Osei 0.176 0.58 0.11 Specialist

The range of diversity values (0.176 to 0.610) is wider than in the toy example,
reflecting both genuine disciplinary variation and the effect of a larger category
set with heterogeneous pairwise distances. Coherence values separate cleanly
into two groups: Al-Rahman’s near-zero coherence (S = 0.04) stands in sharp
contrast to the moderate-to-high coherence of all other researchers (S > 0.42),
indicating that his diverse publications share essentially no references.

Interpretation and Classification

The panel values in Table 2 support a structured classification of each researcher
against the evaluation question. We adopt indicative decision thresholds: A >
0.40 for substantial diversity, S > 0.30 for meaningful coherence, and E > 0.30
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for significant cross-field impact. These thresholds are illustrative; in practice,
they would be calibrated to the local disciplinary context (see Section 5).

Nguyen (A = 0.464, S = 0.50, E = 0.47): genuine integrator. Nguyen
exceeds all three thresholds comfortably. His publications span four major
categories with substantial weight, yet they share a common reference base (S =
0.50) that indicates systematic knowledge integration rather than disconnected
forays. Nearly half of his citations (47%) originate outside the primary category,
confirming that his work achieves genuine cross-field impact. Institutional data
reinforce this assessment: 22 of 55 publications involve co-authors from other
departments (chemistry, engineering, medical school), and all four of his grants
were awarded through interdisciplinary funding panels. The panel recommends
classifying Nguyen for the interdisciplinary track, with a review committee
spanning at least three of his active categories.

Chen (A =0.390, S =0.42, E = 0.35): borderline integrator. Chen falls
just below the diversity threshold (A = 0.390 versus the 0.40 cut-off) but meets
the coherence and cross-field effect criteria. Her publication pattern — strong in
condensed matter and materials science, with systematic engagement in physical
chemistry — suggests an emerging integrator whose interdisciplinary reach is
concentrated among closely related fields. The moderate disparity among her
active categories (most pairwise similarities exceed 0.35) keeps her Rao-Stirling
value below the threshold, even though her research practice is substantively
cross-disciplinary. The panel recommends classification as an emerging integrator,
with periodic reassessment.

Romero (A =0.374, S =0.50, E = 0.72): niche-bridge specialist. Romero
presents the most instructive case for panel interpretation. Her diversity is
below the threshold, reflecting a concentrated position in nanoscience (pg =
0.55). Yet her cross-field effect is exceptional: 72% of her citations come from
outside nanoscience, indicating that her specialized work serves as a bridge
connecting nanoscience to condensed matter, materials science, and engineering.
Her coherence (S = 0.50) confirms that this bridge role is sustained through
an integrated research program, not occasional cross-field publications. Co-
authorship data corroborate the interpretation: 18 of 28 publications involve
collaborators from other departments. The panel correctly identifies Romero as
a case requiring expert review — she does not fit the standard integrator profile,
but her structural role in the departmental research network may be equally
valuable for interdisciplinary funding purposes.

Al-Rahman (A = 0.610, S = 0.04, £ = 0.11): polymath. Al-Rahman has
the highest diversity in the department, with near-uniform weight across four
categories. Yet his coherence is essentially zero (S = 0.04), indicating that his
publications in different fields share no common reference base — each constitutes
an independent contribution to a separate disciplinary conversation. His cross-
field effect is correspondingly low (11%): despite publishing broadly, his work is
cited almost exclusively within the category where each paper was published.
This is the classic breadth-without-integration pattern identified by our toy
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example. Notably, Al-Rahman has zero cross-departmental co-authorships,
confirming that his disciplinary breadth does not translate into collaborative
integration. The panel recommends standard disciplinary evaluation, not the
interdisciplinary track.

Kowalski, Karlsson, and Osei: specialists. The remaining three researchers
have diversity values below 0.35, placing them clearly in the specialist category.
Osei (A = 0.176) is the most concentrated, with 70% of references in condensed
matter physics; his high coherence (S = 0.58) and low cross-field effect (E = 0.11)
describe a focused and productive disciplinary researcher. Kowalski and Karlsson
are early-career researchers whose low diversity reflects limited publication
volume rather than a settled disciplinary profile. For Karlsson (12 publications),
bootstrap confidence intervals yield A € [0.18,0.31] at the 95% level, suggesting
that quantitative panel assessment should be deferred until his portfolio reaches
approximately 20 publications. All three are appropriately routed to standard
disciplinary evaluation.

A noteworthy outcome is the institutional data on co-authorship diversity. For
all seven researchers, the fraction of cross-departmental publications aligns with
the panel classification: Nguyen and Chen have substantial cross-departmental
collaboration (40% and 55% respectively), Romero has the highest rate (64%),
while Al-Rahman, Osei, Kowalski, and Karlsson have zero cross-departmental
papers. This convergence between bibliometric indicators and institutional
process data increases confidence in the panel’s classifications.

Comparison with Single-Indicator Approaches

The case study provides a concrete demonstration of why single-indicator ap-
proaches are inadequate. We compare the panel classification against three
single-indicator rankings.

Shannon entropy (H = — ) p; log, p;) applied to the reference distributions
yields the following ranking: Al-Rahman (H = 2.43), Nguyen (2.32), Chen
(2.05), Romero (1.85), Karlsson (1.45), Kowalski (1.22), Osei (1.08). Under this
measure, Al-Rahman — the polymath with zero integration — ranks as the most
interdisciplinary researcher in the department, ahead of Nguyen, the genuine
integrator.

Rao-Stirling diversity alone produces a qualitatively similar ranking: Al-
Rahman (A = 0.610), Nguyen (0.464), Chen (0.390), Romero (0.374), Karls-
son (0.244), Kowalski (0.190), Osei (0.176). Again, Al-Rahman leads. Both
diversity-only approaches reward breadth irrespective of whether that breadth is
accompanied by knowledge integration.

Cross-field citation ratio alone (F) reorders the ranking substantially:
Romero (E = 0.72), Nguyen (0.47), Chen (0.35), Karlsson (0.18), Kowalski
(0.12), Al-Rahman (0.11), Osei (0.11). This measure correctly demotes Al-
Rahman but elevates Romero — a specialist in nanoscience — to the top
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position, conflating bridge-specialist impact with genuine integrative research.

Each single indicator produces a different “most interdisciplinary” researcher, and
each misclassifies at least one profile. The full panel avoids these errors because it
operates on three orthogonal dimensions simultaneously. Al-Rahman’s polymath
profile (A high, S near zero, F low) is unambiguously detected; Romero’s bridge-
specialist role (A moderate, S moderate, E very high) is flagged for expert
review rather than automatic classification; and Nguyen’s integrator status (A,
S, and E all above threshold) is confirmed with high confidence. This three-way
discrimination is the panel’s primary practical advantage.

Limitations

Several limitations of the case study should be acknowledged, as they illustrate
broader challenges for panel deployment.

Threshold calibration. The decision thresholds used here (A > 0.40, S >
0.30, E > 0.30) are illustrative, not empirically validated. Their calibration
requires benchmarking against cases with known interdisciplinary status — for
instance, researchers funded through interdisciplinary mechanisms whose work
has been independently evaluated by expert panels. Until such benchmarking
is undertaken, the thresholds should be treated as adjustable parameters that
institutions set according to local disciplinary norms.

Similarity matrix temporality. The similarity matrix is derived from the
WoS 2016 journal citation network, while the assessment covers publications
through 2025. Disciplinary boundaries shift over time: nanoscience (Cg), for
instance, may have been more distinct from condensed matter physics (C1)
a decade ago than it is today. Using a static similarity matrix introduces a
systematic bias that particularly affects researchers working at the boundaries
of rapidly converging fields. An updated matrix, computed from citation data
contemporaneous with the assessment period, would mitigate this concern.

Early-career instability. For Karlsson (12 publications) and Kowalski (18 pub-
lications), the panel values are computed from relatively sparse data. Bootstrap
resampling for Karlsson yields 95% confidence intervals of A € [0.18,0.31], a
range that spans the boundary between specialist and moderate diversity. More
generally, the coherence indicator S is sensitive to portfolio size because the
number of pairwise comparisons grows quadratically with the number of publi-
cations. For small portfolios, a single atypical publication can substantially alter
S. A practical recommendation is to supplement panel scores with confidence
intervals and to defer classification decisions for portfolios below approximately
20 publications.

Temporal aggregation. The case study aggregates each researcher’s full career
output, masking potentially important trajectories. Kowalski’s early publications
are concentrated in condensed matter, but her most recent work shows expansion
into materials science and physical chemistry — a trajectory that career-level
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aggregation obscures. A windowed variant of the panel (e.g., computed over a
rolling three-year window) would capture such dynamics, at the cost of reduced
statistical stability for researchers with lower annual publication rates.

Bibliographic coupling limitations. The coherence indicator S measures
integration through shared references. Al-Rahman’s near-zero coherence (S =
0.04) may understate latent methodological connections between his publications
if those connections operate through shared techniques or concepts rather than
shared literature. Text-based measures — such as co-word analysis of abstracts
or topic model similarity — could complement bibliographic coupling in cases
where methodological integration is suspected but not reflected in reference
overlap.

Conclusions

The bibliometric measurement of interdisciplinary research remains an unsettled
problem. Our review of the indicator landscape reveals a field heavily concen-
trated on diversity measures — particularly Rao-Stirling and its variants — while
coherence, diffusion, and novelty dimensions receive comparatively little atten-
tion. The empirical evidence, especially Wang and Schneider’s (2020) finding of
low consistency across 23 measures and Leydesdorff et al’s (2019) demonstration
of limited discriminatory power, strongly suggests that no single indicator is
adequate.

This framing aligns with the four motivating questions stated for this project.
The panel is designed to separate impact/quality evidence from simple breadth
claims (OQ1), to remain computable with institutional data plus clearly stated
external dependencies (0Q2), to distinguish cross-disciplinary integration from
polymathic accumulation (OQ3), and to support auditable agency-level evalua-
tion protocols through explicit multidimensional evidence rather than single-score
ranking (0OQ4).

The three-component panel we propose — diversity (A), coherence (5), and
cross-field effect (E) — addresses this inadequacy by spanning three orthogonal
dimensions. Our toy-data demonstration shows that the panel uniquely char-
acterizes integrators, polymaths, and specialists where any single component
fails. The department-level case study of Section 7 confirms this discriminatory
power at realistic scale: the panel correctly identifies Al-Rahman as a polymath
despite his having the highest diversity score, flags Romero’s bridge-specialist
role for expert review, and confirms Nguyen’s integrator status across all three
dimensions — classifications that no single indicator achieves. The analytical
robustness result — that the diversity-based discrimination is preserved under
perturbations of up to 35% of the similarity matrix — provides confidence that
the approach is not an artifact of parameter tuning.

Rafols (2019) has argued persuasively that science and technology indicators
should be contextualized, multidimensional, and subject to stakeholder validation.
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Our panel is designed in this spirit: it presents three separate dimensions rather
than collapsing them into a single score, and its interpretation depends on the
evaluation context. The practical deployment of such panels — whether for
institutional self-assessment or national agency review — requires attention to
the methodological choices surveyed in Section 5, the open problems identified in
Section 6, and the practical lessons illustrated in Section 7. Empirical validation
on real university data, building on the illustrative case study presented here, is
the natural next step.
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